在计算机检测系统中,由模拟信号到数字信号的转换,是由数据采集系统来完成的。数据采集系统(Data Acquisition System,简称DAS)它是外部被测模拟信号进入测量系统的前置通道,有时也称预处理系统,是对输入的模拟信号进行长时间的数字化测量,从而获得大量数据以便进一步分析与处理的电路。在数据采集系统中,A/D转换器是一个非常重要的环节,它直接关系到测量的、分辨力、转换速度。本文提供的方式充分利用了A/D转换器的输入电压动态范围和量化位数优势,实现了对多路模拟信号的自适应采集,对其他信号采集系统也具有一定的借鉴意义。
l 系统设计
该系统主要由信号调理电路、采集电路和时序控制等几部分组成。被测模拟信号经过信号调理电路后,经多路选择器的快速切换,按需求依次送入A/D转换器进行采样,采样后的数据送入FPGA中处理,系统框图如图1所示。
系统设计的主要指标:模拟信号通道数为46路;系统采样率大于300 Kb/s;量化位数为8位;频率响应范围为DC~1 kHz;通道采样率为100 Hz,200 Hz,400 Hz,500 Hz,800 Hz,1 kHz,2 kHz,4 kHz可选;A/D转换器允许输入信号的幅度为±10 V。
FPGA作为专用集成电路(ASIC)领域中的一种半定制电路而出现,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。FPGA芯片主 要由6部分完成,分别为:可编程输入输出单元、基本可编程逻辑单元、完整的时钟管理、嵌入块式RAM、丰富的布线资源、内嵌的底层功能单元和内嵌专用硬件模块。
2 系统各部分功能及实现
2.1 信号调理电路
信号调理电路主要完成被测信号的阻抗匹配和电压变换,设计时信号调理电路均采用差分输入电路形式。针对不同类型的信号,通过调整电阻阻值即可实现信号的衰减、放大或者阻抗匹配,有利于电路形式的模块化和标准化。信号调节电路如图2所示。
整个信号调理电路采用±12 V供电,根据信号类型将全部模拟信号调理到合适的范围内,以便充分利用A/D的输入动态范围来实现自适应采集。
2.2 采集电路
采集电路主要包括多路选择器和A/D转换器等,多路选择器采用ADG406,通过级联可以形成46路模拟信号通道,采用±12 V供电,保证调理后的信号不失真通过,12根地址线用来控制模拟信号的切换;A/D转换器采用AD7892-1,其具有±10 V的输入电压动态范围和12位的量化能力,信号输入范围设置为±10 V,控制线用来控制A/D转换器的工作状态,并将转换后的12位数据全部接入FPGA中进行处理。
2.3 时序控制
时序控制通过FPGA程序来实现,主要完成多路选择器的切换,A/D转换器的控制和自适应采集逻辑等功能。对于多路选择器的切换和A/D转换器的控制逻辑,只要注意多路选择器的开关稳定时间和A/D转换器的采样时刻即可完成数据采集。自适应采集就是根据已知模拟信号的类型自动选择A/D的转换器输出码位来实现的。为了便于对后文的理解,表1给出AD7892-l输入/输出对应码表和处理后的码表。
前面信号调理电路根据模拟信号的类型把信号分别调理到0~5 V,-5~-O V,-5~+5 V,O~+10 V,-10~-0 V,-10~+10 V等范围内,结合表1的内容即可实现对模拟信号的自适应采集,保证信号的采集。数据自动转换模块的FPGA程序示例如下:
通过测试验证,该法是可行的。在不改变任何硬件电路的情况下,通过FPGA程序可有效实现模拟信号的动态量化,确保信号的量化。通过数据处理软件即可恢复原始信号,如图3所示。
3 结语
设计的基于FPGA的多路模拟信号自适应采集系统,在有限的量化位数限制下,充分利用信号调理电路、A/D转换器的输入电压动态范围和12位的位宽,在相同的量化位数下提高了大部分模拟信号的采样,具有一定的参考价值。
[1]. ADG406 datasheet https://www.dzsc.com/datasheet/ADG406_123542.html.
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。