图1. AD8221的输入ESD拓扑结构
图 2显示了一个具有相似二极管配置的放大器,但在本例中,电流受内部2.2 kΩ串联电阻的限制。它与图1所示电路的区别不仅在于限流电阻R的值,还在于2.2 kΩ可保护电路不受+Vs以上电压的影响。这个例子复杂难懂,务必充分了解以便在使用ESD二极管时优化保护。
图2. AD8250的输入ESD拓扑结构
限流JFET
图3. AD8226的输入保护方案
二极管堆叠
图4. AD8417的低端输入保护方案
背靠背二极管
图5. AD8418的高端输入保护方案
无ESD箝位
某些器件的前端没有ESD器件。很显然,如果没有ESD二极管,设计人员当然无法将其用于箝位。之所以提到这种架构,是因为在研究过压保护 (OVP) 时,需要注意这种情况。图6所示的器件仅使用大阻值电阻保护放大器。
图6. AD8479的输入保护方案
ESD单元用于箝位
除了解ESD单元如何实现之外,还必须知道如何利用这些结构提供保护。典型应用使用串联电阻来限制额定电压范围内的电流。
当放大器配置为图7所示时,或者输入受连接到电源的二极管保护时,输入电流限值可利用以下公式计算。
图7. ESD单元用于箝位
公式1用到一个假设,即VSTRESS 》 VSUPPLY。若非如此,应测得更的二极管电压并将其用于计算,而不要使用0.7 V的近似值。
下面是一个计算实例,其中放大器采用±15 V电源供电,要防范的输入过压高达±120 V,输入电流限制在1 mA。根据公式1,我们可以使用这些输入进行计算:
根据上述要求,RPROTECTION 》 105 kΩ可将二极管电流限制在 1 mA以下。
了解限流
IDIODE 值随器件而不同,它还取决于施加过压的特定应用情形。持续数毫秒的性事件,与在应用的全部20年或更多年的任务寿命中持续施加电流,其电流将会不同。具体指导值可在放大器数据手册的值部分或应用笔记中找到,通常在1 mA至10 mA范围内。
故障模式
具体保护方案的电流额定值终要受两个因素的限制: 二极管功耗的热影响和电流路径的电流额定值。功耗应保持在阈值以下,使工作温度始终处于有效范围;所选电流应在额定值范围内,以免电子迁移引起可靠性问题。
热影响
当电流流入ESD二极管时,二极管的功耗会引起温度升高。多数放大器数据手册指定了热阻(通常指定?JA),它显示了结温升幅与功耗的关系。考虑差情况下的应用温度,以及功耗引起的坏温度升幅,可以判断保护电路是否有效。
电子迁移
即使电流不引起热问题,二极管电流也可能造成可靠性问题。由于电子迁移,任何电气信号路径都有一个寿命电流额定值。二极管电流路径的电子迁移电流限值通常受与二极管串联的内部走线的厚度限制。放大器制造商不一定会发布此信息,但若二极管长时间工作(而不是工作很短时间),就需要予以考虑。
举个例子,当放大器监控(因而连接到)一个独立于其自身供电轨的电压轨时,电子迁移便可能是一个问题。当存在多个电源域时,可能会发生因电源时序问题而引起电压暂时超过条件的情况。考虑差情况下的电流路径和在整个使用寿命中以此电流工作的持续时间,并了解电子迁移的允许电流,便可避免电子迁移引起可靠性问题。
结论
了解放大器内部ESD二极管如何在过电应力期间激活,有助于轻松提高设计的鲁棒性。研究保护电路的热影响和电子迁移影响,可以凸显潜在的问题并显示是否需要额外的保护。考虑本文提出的条件可以让设计人员作出明智选择,避免在现场发生鲁棒性问题。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。