循线算法原理与实践在机器人上的应用

时间:2011-06-06

  前言

    现在,国际上对机器人的概念已经逐渐趋近一致。一般说来,人们都可以接受这种说法,即机器人是靠自身动力和控制能力来实现各种功能的一种机器。联合国标准化组织采纳了美国机器人协会给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可用电脑改变和可编程动作的专门系统。”现在机器人也在逐渐走向普及,在各方面得到了应用。本文介绍的是机器人的循线算法原理及其实践应用。

    硬件基本构架

  对于机器人的循线,为了获得场地上白线(黑线)的信息,硬件结构一般有如下几种种类。

  1、红外对管阵列。采取这种方式的机器人比较多,尤其在各种机器人竞赛中,几乎是标准配置。但是这种技术有一个致命的弱点,就是对于场地光线的干扰特别敏感,而且也很难把红色和白线区别开来,所以使用受到一定的限制。一般解决这类问题的方法是在红外光上加载一个调制波,通过检测这个调制波来消除场地光线的干扰,至于如何解决红色和白色的区别问题,那就几乎是五花八门了。

  2、光纤传感器阵列。采用这种传感器阵列的原因是,光纤非常细,在单位面积内可以安装更多的传感器,从而获得更地场地信息。当然,钱也也花得更多。

  3、线性CCD。这种硬件方法几乎是一种对场地信息分辨率的BT追求,如果说红外对管阵列还是离散信息的话,那么线性CCD就是线性的连续数据。当然驱动它也不是一件容易的事情,对于单片机也有更高的速度要求。

  4、视觉。视觉技术相对复杂,对硬件设备的要求对我们来说就好比是 平民要迎娶公主一样 天价……没有个10万8万不要过问——当然,大款斗不过公_款,在实验室耍的各位不在以上说明之列。

  OurRobotV1是一款面向广大初学者的DIY类机器人系统,肯定从基础“原理”的部分入手了哈——成本也是考虑因素之一。硬件系统使用4051驱动 5个红外管,通过AD来采集,在程序中需要使用以下的配置来驱动该硬件系统:

  /*-----------红外循线模块初始化--------------*/

  # define IRSB_A      _PB2                                 //3个4051通道

  # define IRSB_B      _PB1

  # define IRSB_C      _PB0

  # define IRSB_COM    0                                    //使用AD0通道

  # define IRSB_SENSOR_COUNT    5                           //说明管子的数目,默认为8个

  # define IRSB_SENSOR_SENSITIVITY 50                       //对外界环境的灵敏度

  # define IRSB_SENSOR_BLACK_LINE                           //白底黑线,默认黑底白线

  # include <RD_UseInfraredScanBoard.h>                     //头文件

  基本原理

  所谓循线,就是通过一定的传感器探测地面色调迥异的两种色彩从而获得引导线位置,修正机器人运动路径的一种技术。就红外传感器来说,就是通过对主动发射的红外线进行接受,检测反射光的强度来获取地面色彩信息的。常识告诉我们,黑色几乎不反射,所以回来的光强弱,白色反射很强,所以很容易被从黑色的背景中检测到——说的太拗口了。不说太多理论的东西,我们就从基于红外对管阵列的循线技术来说起。

  假设,我们使用的是黑底白线的场地。红外对管阵列由3个红外对管1字摆开组成。白线的宽度略小于或等于红外对管阵列的宽度。

  1  数据的采集

  对于机器人来说,通过传感器感知周围事物的信息,利用这些信息并不作太多智能上的计算而直接通过一定的转换,指导机器人的运动——这种形式在人工智能(AI)上叫做机器人的“反应范式”。我们要想让我们的机器人能够寻着我们给定的轨迹线运动,步就必须让他感知到轨迹线的存在。一般的做法就是通过AD采样,获得红外对管(传感器)反馈回来的电压信息。然而,这样获得的电压值信息是无法直接指导运动的,必须把他们转化为二值(也就是二进制信息,1表示线存在,0表示线不存在)信息,然后扫描每一个管子反馈回来的二值信息来判断白线的位置。

  》技术点A

  AD信号的阀值化。(你可以参考其它的算法,获得比较详尽的技术,我这里只是举例一二)

  所谓阀值化,就是通过一定的“范围把握”,把线性数据转化为离散数据的一种变换。简单的说,就是通过分段函数的方法,将数据分类。我们这个应用中,需要使AD采集回来的电压信息阵列变换为一个恰恰能够较为准确表示白线位置信息的二进制信息阵列;假定1代表白线存在,0代表白线不存在。由于白色和黑色在电压差异上非常之巨大,所以可以简单的通过一个标志线来区分它们,当电压值高于这个标志线了,就把他标志为1,否则就标志为0,算法描述为:

  if (AdValue[i] > MarkLing)

  {

  LineInfor[i] = 1;

  }

  else

  {

  LineInfor[i] = 0;

  }

  这样做非常简单,适合于比较标准的场地,然而对于那些模糊了的场地或者是非标准场地,即便人的肉眼能够看出来,对于机器人来说,看到的就是花白的一片或者是黑色的夜幕——当标志线值过高时,机器人能看到的只是那些特别明显的白线,其他则是黑色的夜幕,很容易丢失轨迹线;当标志线值过低时,机器人眼中就是白茫茫的一片毛刺。总而言之,这种方法对场地的适应性非常差。解决方法是,利用斯密特触发特性,通过设定两个标志线来标定轨迹线信息,当AD值高于某一值且原本状态位标志该位置为0时,标志1;当AD值低于另外某一值且原本状态位显示该位置为1时,标定0。算法描述为:

  /***********************************************************

  *  函数说明:白线状态计算函数                              *

  *  输入:    结果变量的地址                                *

  *  输出:    探测到白线的传感器数量                        *

  ***********************************************************/

  char IRSBgetLineState(char *LastState)

  {

  char n = 0;

  char Start = 0;

  char TGTCounter = 0;

  #ifdef IRSB_SENSOR_COUNT_EVEN                           //传感器为偶数时的情形

  Start = (8 - IRSB_SENSOR_COUNT)》1;

  #else                                                   //传感器为奇数时的情形

  Start = (7 - IRSB_SENSOR_COUNT)》1;

  #endif

  for (n = 0;n<IRSB_SENSOR_COUNT;n++)

  {

  #ifndef IRSB_SENSOR_BLACK_LINE

  if ((*LastState) 《 (7 - Start - n)》7)              //从上向下跳变

  {

  if (IRSB_SENSOR(n) < IRSBJudgeLine[0])

  {

  (*LastState) &= ~(1 《 (Start + n));

  }

  else

  {

  TGTCounter ++;

  }

  }

  else                                                //从下向上跳变

  {

  if (IRSB_SENSOR(n) > IRSBJudgeLine[1])

  {

  (*LastState) |= 1 《 (Start + n);

  TGTCounter ++;

  }

  }

  #else

  if ((*LastState) 《 (7 - Start - n)》7)             //从上向下跳变

  {

  if (IRSB_SENSOR(n) > IRSBJudgeLine[1])

  {

  (*LastState) &= ~(1 《 (Start + n));

  }

  else

  {

  TGTCounter ++;

  }

  }

  else                                                //从下向上跳变

  {

  if (IRSB_SENSOR(n) < IRSBJudgeLine[0])

  {

  (*LastState) |= 1 《 (Start + n);

  TGTCounter ++;

  }

  }

  #endif

  }

  return TGTCounter;

  }

  很显然,通过调节两条线之间的距离就可以控制算法的灵敏度,一种极限的情况,当该值为0时就是前面提到过的那种简单算法了。

  》技术点 B 动态预值

  当然,这种算法在简单的机器人循线中不是很常用。比较常见,适应性强的方法是,首先从AD值中找到一个中间值作为MarkLine,然后从MarkLine稍小的值开始向上或向下搜索,(或者可以从AD值中找那些比较接近值和值之差的0.618倍的数值),然后再标记,寻找一个合理的值,比方说恰好在这种状态下找到的白线数量少于4个。这样的算法叫做动态预值。

  /***********************************************************

  *  函数说明:传感结果处理函数                              *

  ***********************************************************/

  char IRSBproccessAdsValue(char TempLineState)

  {

  unsigned int MaxValue = 0;

  unsigned int MinValue = 0xffff;

  unsigned int TempValue = 0;

  char n = 0;

  if (!IfGetAllSensorADCValue)                            //采样是否完成

  {

  return TempLineState;

  }

  for (n = 0;n<IRSB_SENSOR_COUNT;n++)                     //获取采样跨度

  {

  TempValue = IRSB_SENSOR(n);

  if (MaxValue < TempValue)

  {

  MaxValue = TempValue;

  }

  if (MinValue > TempValue)

  {

  MinValue = TempValue;

  }

  }

  if (MaxValue - MinValue > 200)                          //开始动态设定阀值

  {

  if (((MaxValue + MinValue) 》 1) > (IRSB_SENSOR_SENSITIVITY 》 1))

  {

  TempValue = ((MaxValue + MinValue) 》 1) - (IRSB_SENSOR_SENSITIVITY 》 1);

  }

  else

  {

  TempValue = 0;

  }

  while(TempValue < 650)                             //测试循环体

  {

  IRSBJudgeLine[0] = TempValue;

  IRSBJudgeLine[1] = TempValue + IRSB_SENSOR_SENSITIVITY;

  if (IRSBgetLineState(&TempLineState) < 4)

  {

  break;

  }

  TempValue += 20;

  }

  }

  else

  {

  #ifndef IRSB_SENSOR_BLACK_LINE

  if (MaxValue > 700)                                //上限

  {

  TempLineState = 0xff;

  }

  else

  {

  TempLineState = 0x00;

  }

  #else

  if (MaxValue > 700)                                //上限

  {

  TempLineState = 0x00;

  }

  else

  {

  TempLineState = 0xff;

  }

  #endif

  }

  IfGetAllSensorADCValue = False;                         //设定操作标志位False

  return TempLineState;

  }

  2  数据的简单加工——个循线程序

  到目前为止,我们已经把AD的值的数组转变为了一个表示白线位置的二进制位的数组——我们不妨直接把他用一个字节表示哈。那么,这个字节的状态就表示了当前白线的位置信息。再假设,我们已经写好了几个函数用来分别控制小车的左右运动。那么我们就可以通过以下的简单方式来实现循线了。

  //用字节的高三位表示三个管子检测到的白线信息。

  switch (LineInforByte)

  {

  case 0b11100000:         //全部在白线上

  Motor_Left_GoFront(FullSpeed);

  Motor_Right_GoFront(FullSpeed);

  break;

  case 0b01100000:         //明显车子向左偏了哈

  Motor_Left_GoFront(FullSpeed);

  Motor_Right_GoFront(NormalSpeed);

  break;

  case 0b00100000:

  Motor_Left_GoFront(FullSpeed);

  Motor_Right_GoFront(LowSpeed);

  break;

  ……

  //其他情况仿照上面自己写了哈。

  default:

  Motor_Left_GoFront(StopNow);

  Motor_Right_GoFront(StopNow);

  break

  }

  呵呵,这样就完成了一个循线小车的程序了哈。简单吧。

  顺便说明一下下,Motor_Left_GoFront()函数是一个控制电机PWM输出的函数。

  FullSpeed NormalSpeed LowSpeed StopNow StopFree 是一些控制PWM的宏定义,你可以修改这些宏定义的值来实现以上的功能。我想,你看了这个程序应该已经对循线的基本原理了然于胸了吧。哈哈哈哈哈哈哈哈。

  3  数据的加工——复杂地面情况的模糊识别算法

  以上的算法的确可以应付规范场地下的情况了,但是由于其类似查表式的数据处理方式,一旦出现真值表中没有的情况——哪怕是很明显的直线存在——机器人都没有办法处理了。典型的就是在地上有大块的白色斑点,导致机器人对白线视而不见。

  解决以上问题的方法还要从人眼识别白线的原理上说起。在破坏严重的场地上,人类的眼睛仍然可以识别出原先的白线,这是为什么呢?通过重心。人类的眼睛通过捕捉白线的重心确立白线的大体轨迹,从而辨认出白线的位置。从概率的角度上说,在破坏严重的场地上,出现在白线两边的浅色干扰的概率是一样的,即使不同,由于白线本身的存在,其重心至少是不会偏离白线很远的,所以,只要简单的获得地面浅色标志的重心,就可以大体确立白线的所在。我们可以利用物理学上质心的算法获得这一信息。忘了说一点,要想机器人增强对环境的适应力,就需要增加传感器的数目。我们不妨用8个红外管作为传感器。这样通过处理后获得的场地信息就整整1个字节了。假设1个光电管的1拥有1单位的重量,八个光电管的坐标分别为 -7 -5 -3 -1  1 3 5 7,其间距都是2个单位,通过置信公式很容易计算出质心的坐标,通过这个坐标和0的,就可以知道当前机器人偏离白线的多少,而这个偏离值则可以通过简单的比例直接指导运动函数。典型实例如下:

  /********************************************************

  *  函数说明:电机动作调速函数                           *

  *  说明:    该函数放在定时器或者主循环里面用于产生软PWM*

  ********************************************************/

  void SpeedPWM(char PWMLine)

  {

  char PWMLine_L = PWMLine;

  char PWMLine_R = PWMLine;

  static char PWMCount_L = 0;

  static char PWMCount_R = 0;

  char Temp = 0;

  if (FollowLineEnable == True)

  {

  Temp = (char)fabs((float)CG_X);

  if (AdcValueFlag == 0)

  {

  Temp = 0;

  }

  else

  {

  if (CG_X <0)

  {

  if ((Temp《4) <= PWMLine_R)

  {

  PWMLine_R -= ((Temp《5)+Temp《2);

  }

  else

  {

  PWMLine_R = 0;

  }

  }

  else

  {

  if ((Temp《4) <= PWMLine_L)

  {

  PWMLine_L -= (Temp《5);

  }

  else

  {

  PWMLine_L = 0;

  }

  }

  }

  }

  PWMCount_L ++;

  PWMCount_R ++;

  if (PWMCount_L > Fastest)

  {

  PWMCount_L = Stop;

  }

  if (PWMCount_R > Fastest)

  {

  PWMCount_R = Stop;

  }

  if (PWMCount_L < PWMLine_L)

  {

  switch (GoDirection)

  {

  case Front:

  Motor_Left_GoFront;

  break;

  case Back:

  Motor_Left_GoBack;

  break;

  case Left:

  Motor_Left_GoFront;

  break;

  case Right:

  Motor_Left_GoBack;

  break;

  case Stop:

  Motor_Left_Stop_Free;

  break;

  }

  }

  else

  {

  Motor_Left_Stop_Free;

  }

  if (PWMCount_R < PWMLine_R)

  {

  switch (GoDirection)

  {

  case Front:

  Motor_Right_GoFront;

  break;

  case Back:

  Motor_Right_GoBack;

  break;

  case Left:

  Motor_Right_GoBack;

  break;

  case Right:

  Motor_Right_GoFront;

  break;

  case Stop:

  Motor_Right_Stop_Free;

  break;

  }

  }

  else

  {

  Motor_Right_Stop_Free;

  }

  }

  /********************************************************

  *  函数说明:获取偏离轨迹线的数值                       *

  *  输入:    表明寻线状态的字节                         *

  *  [说明]                                               *

  *           通过类质心算法获取当前机器人偏离轨迹线的量  *

  *           - 表示偏左 + 表示偏右                       *

  ********************************************************/

  signed char GetCG_X(unsigned char AdcValues)

  {

  signed char a = 0;

  signed char Temp = 0;

  signed char Totals = 0;

  for (a = 0;a<8;a++)

  {

  if ((AdcValues 《a)》7)

  {

  Temp += ((-7)+ (a《1));

  Totals++;

  }

  }

  if (Totals ==0)

  {

  return  0;

  }

  return  (Temp / Totals);

  }

  函数调用GetCG_X函数,用来获取CG_X,CG_X直接在PWM输出函数里面指导机器人的运动。

  以上方法的好处是,提供了一个比例调节循线动作的可能。支持多传感器的情况,尤其适合线性CCD类的线性数据的处理。为机器人提供了一个相对完整的视觉,不可能出现无法识别的情况,而且,这种情况可以使机器人在不加修改程序的情况下直接在在白线循线和黑线循线状态下切换。

  4  循线位置闭环控制中的PD算法

  从前文,我们已经初步掌握了获取机器人位置信息的方法,并且通过质心公式拥有了利用简单的P调解来指导机器人运动的可能——不知不觉间,我们已经进入了控制学中关于位置环的闭环控制的问题了。

  我们通过传感器获得白线的位置信息,并且通过计算获得了白线的质心距离车体中心的偏移量。控制车体中心位于白线的质心——这就是循线中位置环所要控制的东西。

  首先,我们来说说如果不用PD算法,我们会如何控制这一位置环。我们可以简单的利用如果质心偏左就向左边全速运动,质心偏右就向右边全速运动来实现。这样的确可以完成循线的操作,但是效果显而易见,车子就像喝醉了酒一样,走着蛇形的路线。如果我们通过偏移量的多少乘上一个比例K来指导向左或者向右运动的幅度,那么我们的s形运动的幅度就会越来越小,终到达水平运动。

  这就是P算法。在P算法中k值的确立非常关键,如果K值过大,仍然会出现明显的S形运动——这个被称为超调;如果K值过小,那么就不能有效地指导循线,机器人就像对白线没有反应一样,很容易就超出了合理的运动范围;如果K值不合适,那么至少也会导致机器人不能以快的速度到达位置环的平衡位置甚至是震荡。如何获得一个合适的K值理论上是可以通过计算获得的,但往往经验值和测试得来的数值会比较有效。

  当使用P算法时,到达平衡位置中心后由于场地的原因,机器人出现频繁的调节位置的动作,就会大大限制住机器人移动的平均速度。这个时候,就需要一个和回复位置环速度有关系的量,这个就是我们通常称之为D的量,通常这个也称之为和动量有关的修正量——大家可以查阅相关的书籍获得D调节的详细内容。一般情况下,循线中仅仅是P调节就已经足够了满足一般要求了。



  
上一篇:图形处理功能平板电脑芯片未来可能上市
下一篇:CEVA DSP内核蜂窝基带处理器出货量超越高通、TI和Mediatek

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料