本应用笔记介绍了一种使用数字电阻为激光驱动器供电的新架构。它讨论了数字电阻的特性及其连接到标准激光驱动电路时的影响。此外,还将显示必要的解决方案和计算。
简介
本应用笔记介绍了一种使用数字电阻为激光驱动器供电的新架构。它讨论了数字电阻的特性及其连接到标准激光驱动电路时的影响。此外,还显示了必要的解决方案和计算。
在标准激光驱动器电路中添加
运算放大器和数字
电位器可产生一个驱动器,该驱动器可根据温度改变激光器的功率设定点,从而生成作为电位器值的线性函数的光电
二极管电流。
该设计
将运算放大器和数字电位计添加到标准激光驱动器电路中,产生一个驱动器,该驱动器可以根据温度改变激光器的功率设定点,从而生成作为电位计值的线性函数的光电二极管电流。
MAX3740参考引脚(REF)和功率监控光电二极管(MD)之间的电阻设置光电二极管电流。然后,功率控制环路将激光二极管驱动至提供电流的强度。这种方法的问题是控制电压太低:MD 处的标称电压为 1.6V,REF 处的标称电压为 1.8V,
电阻器上仅留下 0.2V 用于设置光电二极管电流。
DS1859 中的数字电阻器的电阻可高达 1kΩ,而电流仅为 200μA。由此产生的电流与电阻函数是非常非线性的,在高电流下分辨率很差。您可以在REF和MD之间添加一个
固定电阻来提高电流,但调节范围仍然只有200μA。(固定电阻器也没有提供任何非线性度和分辨率的改进。)光电二极管电流与 DS1859 电阻的关系图(图 1 中的左下迹线)显示了串联电阻值为 806Ω 的电路的响应,该电路使响应248μA。
带有外部光电二极管的MAX3740激光驱动器为激光器产生非线性控制电压(左下迹线)。添加数字电阻器和运算放大器(图 2)可产生所示的线性控制电压。这些问题的解决方案(图2)是让REF和MD之间的电阻(R1)设置光电二极管电流,然后减去与DS1859电阻成比例的电流。减去的电流来自运算放大器的输出,它通过 R2 从光电二极管窃取电流。选择所示运算放大器是因为其尺寸小(SC70 封装)和低成本。它与数字电阻(DS1859)和激光驱动器(MAX3740)采用相同的+3.3V电源供电。
运算放大器产生与 MD 值 (REF – MD) 和 DS1859 值成比例的电压 (VO)。反过来,该电压通过 R2 产生与 VO 和 MD 电压差成比例的电流。MD 处的影响相互抵消,因此通过 R2 的电流仅取决于 (REF – MD)、稳定的 0.2V 和 DS1859 值。通过光电二极管的电流等于通过 R1 的电流 (803μA) 减去通过 R2 的电流。因此,光电二极管电流是电位计值的线性函数,如图 1 所示。通过适当的电阻值,该电路可与任何值的电位计配合使用,并提供任何范围内的电流。其的限制是运算放大器的电流驱动能力。