图1显示了典型的应用电路,前端采用CRM PFC转换器,后端采用LLC SRC DC-DC转换器。FL7930B 和 FAN7621S 在 150W 额定应用中以中等功率实现高效率,其中 CRM 和 LLC SRC 两级运行显示出性能。与连续导通模式 (CCM) 升压 PFC 转换器相比,CRM 升压 PFC 转换器可以在轻型和中等额定功率下实现更高的效率。这些好处源自消除了升压二极管和零电流开关 (ZCS) 的反向恢复损耗。LLC SRC DC-DC 转换器比传统的硬开关转换器实现了更高的效率。FL7930B 提供受控导通时间来调节输出直流电压并实现自然功率因数校正。FAN7621S 包括高侧栅极驱动器电路、的电流控制振荡器、频率限制电路、软启动和内置保护。高侧栅极驱动电路具有共模噪声消除能力,保证稳定运行并具有出色的抗噪声能力。使用零电压开关 (ZVS) 可以显着降低开关损耗并显着提高效率。ZVS 还显着降低了开关噪声,从而允许使用小尺寸的电磁干扰 (EMI) 滤波器。使用零电压开关 (ZVS) 可以显着降低开关损耗并显着提高效率。ZVS 还显着降低了开关噪声,从而允许使用小尺寸的电磁干扰 (EMI) 滤波器。使用零电压开关 (ZVS) 可以显着降低开关损耗并显着提高效率。ZVS 还显着降低了开关噪声,从而允许使用小尺寸的电磁干扰 (EMI) 滤波器。
BCM PFC 预调节器的基本操作升压转换器广泛使用的工作模式是连续导通模式 (CCM) 和边界导通模式 (BCM)。这两个描述性名称指的是流经升压转换器的储能电感器的电流,如图 2 所示。正如名称所示,CCM 中的电感器电流是连续的;而在BCM中,当电感电流返回到零时,新的开关周期开始,这是连续导通和不连续导通操作的边界。尽管 BCM 操作在电感器和开关器件中具有较高的 RMS 电流,但它可以为 MOSFET 和二极管提供更好的开关条件。如图2所示,消除了二极管反向恢复,并且不需要快速恢复二极管。MOSFET 也以零电流导通,
BCM PFC 的基本思想是每个开关周期中电感电流从零开始,如图 3 所示。当升压转换器的功率晶体管导通固定时间时,峰值电感电流与输入成正比。电压。由于电流波形为三角波;每个开关周期的平均值与输入电压成正比。在正弦输入电压中,转换器的输入电流以非常高的精度跟随输入电压波形,并从源提取正弦输入电流。这种行为使得 BCM 运行中的升压转换器成为功率因数校正的理想选择。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。