数字信号处理作为信号和信息处理的一个分支学科,已渗透到科学研究、技术开发、工业生产、国防和国民经济的各个领域,取得了丰硕的成果。对信号在时域及变换域的特性进行分析、处理,能使我们对信号的特性和本质有更清楚的认识和理解,得到我们需要的信号形式,提高信息的利用程度,进而在更广和更深层次上获取信息。数字信号处理系统的优越性表现为:1.灵活性好:当处理方法和参数发生变化时,处理系统只需通过改变软件设计以适应相应的变化。2.高:信号处理系统可以通过A/D变换的位数、处理器的字长和适当的算法满足要求。3.可靠性好:处理系统受环境温度、湿度,噪声及电磁场的干扰所造成的影响较小。4.可大规模集成:随着半导体集成电路技术的发展,数字电路的集成度可以作得很高,具有体积小、功耗小、产品一致性好等优点。 然而,数字信号处理系统由于受到运算速度的限制,其实时性在相当长的时间内远不如模拟信号处理系统,使得数字信号处理系统的应用受到了极大的限制和制约。
远方保护设备是用于电力系统的传输保护命令信号装置。当电力系统发生故障时,线路两端的继电保护装置所产生的命令信号借助远方保护设备并经PLC(电力线载波)、光纤等通信通道,把跳闸命令信号传送到远端保护屏用以跳闸、切机或切除负荷,起到故障保护作用。采用PLC通道传输保护命令的各种单频信号发送到远端远方保护设备,并对由通道传输来的含有噪声的模拟单频信号,首先通过远方保护设备中的一组带通滤波器,再用功率谱估计法计算,选择出相应可靠的保护命令信号,满足电力系统保护命令传输的基本要求--及时性、安全性和可信赖性。
1 远方保护设备的性能要求
远方保护的工作方式可分为闭锁式、允许跳闸式、直接跳闸式3种。
PLC复用远方保护设备是利用电力载波机电路实现保护信息的远距离传输,保护命令信号设备为了在PLC中通信,需将保护命令系统的命令信息变换成0 kHz~4 kHz频率范围的音频信号,与话音及远动等信号复用在电力线上传输。
保护命令信号设备系统性能主要有传输时间、安全性、可信赖性3项。这3项指标是相互关联的,用相同的信号处理方法,若提高安全性,则会降低可信赖性;若提高安全性和可信赖性,则传输时间变长,即传输速度变慢。
安全性是指未发命令信号情况下,远方保护抗御干扰和噪声、接收端不出现命令状态的能力。安全性为:1-Puc。其中,Puc为虚假命令概率。虚假命令是指未发命令情况下接收端输出超过规定持续时间的命令。
可信赖性是指存在于扰和噪声的情况下有效地发出并接收命令的能力。可信赖性为:1-Pmc。其中,Pmc为丢失命令概率。
2 命令信号产生
远方复用保护设备可传输1~4个保护命令,命令信号传输方式有"2+2"或"3+1"两种。
远方保护设备在静态时将监护音频率信号(监频)发送到电力载波机音频汇接接口,监频信号和语音信号、远动信号及导频复用后一起在电力线上传输;需发命令信号时切断监护信号,发命令音频率信号及提升信号到电力载波机,PLC将语音信号和远动信号切断,并提升功率,通道以满功率发命令信号。
监护音频率和命令音频率采用满足ITU-T的R.35、R.37和R.38要求的标准频率,为与不同的电力载波设备配合使用,远方保护设备提供几十个频率供选择。远方保护设备有效频带300 Hz~3 850 Hz,发送频率品种有监护音频率信号、命令音频率信号(根据工作模式,多7个命令音频率信号)。远方保护工作方式为直接跳闸时,可对命令信号进行编码,提高远方保护设备传输的安全性,非编码信号常用于传输快速保护命令,如允许跳信号或闭锁信号。为编码方式时,根据要求编码选用2个命令音频率进行FSK调制。
单频信号的产生可采用DSP函数查表法。在Flash存储器中预置一个正弦函数表,每个命令信号和监护信号控制DSP对函数表进行查找,产生相应的单频信号采样脉冲,再通过模拟低通滤波器平滑滤波产生单频正弦信号。
考虑函数表大小时,取频率分辩率为1 Hz,采样率为8 000 Hz,通过对信噪比的计算,8位数据可满足需要,即一个配置8 k×8 bit的函数表。
3 信号接收及检测
远方保护设备接收支路对从电力载波机送入的信号,先进行非线性处理(通过一组低通滤波器),再对信号进行数字化处理。对信号频谱进行判决,判别是命令信号、监护信号还是虚假命令信号。若为FSK调制信号,则进行FSK解调,得到编码,再判别是哪个命令信号。当连续一段时间(30 ms~500 ins)接收不到命令信号或监护信号,或者再在一段时间(30ms~500 ms)内接收到不止一个命令信号或监护信号,接收器闭锁,同时发出相应的告警。
其中信号判别是否有漏判或误判,取决于对接收信号的数字化处理深度,即信号检测,下面用几种常见信号检测算法对单频信号进行检测,并用MATLAB仿真比较。
3.1 能量计算法
采用这种方法,对PLC通道传输来的有噪声的模拟单频信号进行采样变换后,形成采样脉冲信号,通过并接在接收端的数字椭圆窄带滤波器后,相应的滤波器将输出滤除带外噪声的单频信号脉冲,然后将脉冲逐点存人移位寄存器,同时对脉冲进行逐点能量计算,然后对能量进行判决,检测是否存在相应的单频信号。如图2所示。
用MATLAB进行仿真,采样频率Fs=10 000 Hz,加上噪声,信噪比为-6 dB,输入信号x=sin(0.4πn)+sqrt(2)rand(1,N),仿真图如图3所示。
通过理论计算和MATLAB仿真可知,数字滤波器其实质是一个移位寄存器,因而进入滤波器的脉冲必须经过一段时延后方可稳定输出,时延较大。同时,此算法抗噪性能较差,对较低信噪比的输入信号无法检测,会出现虚假信号。
3.2 离散傅里叶变换法
信号采样进来后,先通过这一组滤波器,对通过滤波器的信号再进行离散傅里叶变换运算。有命令来时,对应该命令滤波器输出的信号经离散傅里叶变换的值将产生一个尖峰。离散傅里叶变换分析的频域,对滤波器的时延并不敏感,所以很快就可以判别信号。
但是当信噪比低时,由于取的离散傅里叶变换点数太少,不能很好地体现噪声的功率谱,所以噪声大时会出现漏报和虚报。
输入信号为x=sin(0.4πn)+sqrt(2)rand(1,80),信噪比为-6 dB时,仿真图见图5。
3.3 功率谱估计法
信号功率谱分析法是现代信号检测的主要方法之一,采用Multitaper法,运用正交窗口获得相互独立的谱估计,然后组合生成终的谱估计,通过仿真分析,这种方法的抗宽谱噪声性能优于能量法和离散傅里叶变换法。
仿真结果如下:采样样频率为Fs=40 000 Hz,时间长度取10 ms,输入信噪比为-6 dB,输入信号为x=sin(2π×781.25t)+sqrt(2)rand(size(t))时,结果见图6。从图中可以看出在781 Hz处有的功率谱比其他频点的功率谱要高出2 dB以上,可以检测出信号。
这种算法的优点是抗白噪声性能好。这种算法的缺点是运算量大,算法实现非常复杂。通过计算,做功率谱分析需要DSP执行1万~2万次运算。每采样一块数据后进行分析运算。设取的一块100个数据,两块数据的间隔为2.5 ms,DSP芯片的运算速度为120MFLOPS(百万次浮点运算每秒)、60MIPS(百万条指令每秒),在2.5 ms内可以执行0.3MFLOPS或0.15 MIPS。所以处理时间上是足够的。
远方保护设备从载波机采集的信号并不是完全的白噪声或脉冲干扰信号,而是还包含有正常语音信号和数据信号的复合信号。尤其是语音信号的能量有可能集中在某一频带内,在这种情况下,功率谱估计会在某个频点形成一个极大值,从而引起系统的误判。
功率谱估计方法是对频域分析,所以对滤波器的延时并不敏感,加上一组滤波器后仍在10 ms内检测出信号,同时误报率性能得到了明显改善。-6 dB信噪比条件下,语音信号进行功率谱分析的结果见图8。
4 结束语
以DSP芯片为构造的数字信号处理系统,可集数据采集、传输、存储和高速实时处理为一体,能充分体现数字信号处理系统的优越性,能很好地满足载人航天领域设备测量、可靠性、信道带宽、功耗、工作电压和重量等方面的要求。目前,DSP芯片正在向高性能、高集成化及低成本的方向发展,各种各类通用及专用的新型DSP芯片在不断推出,应用技术和开发手段在不断完善。这样为实时数字信号处理的应用——尤其是在载人航天领域中的应用提供了更为广阔的空间。我们有理由相信,DSP芯片进一步的发展和应用将会对载人航天信号处理领域产生深远的影响。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。