1 两通道DPCA动目标检测原理
PDCA(Plan-Do-Check-Act的简称)循环是品质管理循环,针对品质工作按规划、执行、查核与行动来进行活动,以确保可靠度目标之达成,并进而促使品质持续改善。规划(Plan):产品可靠度目 标预测与订定、可靠度计划研拟与确定、可靠度组织与分工。执行(Do):可靠度作业激励、命令与实施。查核:产品可靠度 评定与评估、可靠度作业管制与稽核。行动(Action):各种可靠度工作之作业单位间协调、可靠度改善对策订定、改善行动执行 与跟催。 两天线之间的距离是2d,每个天线都可以作为独立的发射和接收通道。传统的DPCA条件要满足2d=mva/prf,其中,m为正整数,va是载机飞行速度,prf是脉冲重复频率。两通道DPCA通常采用前向天线发射,两天线共同接收体制。两天线接收的回波,前路相位中心与一定时间延迟(即m/prf)后的后路相位中心对应的空间位置重合,相当于两天线在不同时刻在同一空间位置对同一地面场景照射。两路回波单独处理为两幅SAR复图像,这两幅复图像由于仅存在一个很短的观测时间间隔,因此包含的静止目标信息相同,运动目标信息不同。发射m个脉冲后,天线2的接收相位中心移到O2'处,天线1的接收相位中心在O'处,而O'和O2位于相同的方位位置,因此天线2接收的第1个脉冲回波与天线1接收的第m个脉冲回波,都包含相同的静止目标信息,但是运动目标由于自身的运动而产生了额外的信息,所以二者包含的动目标信息不同。将两个回波信号相减,就能够消除静止目标信息,保留动目标信息。
在t=0时刻,动目标P真实方位位置为x0,到航迹方向的斜距为Rc,斜距平面内距离向速度(称为径向速度)为vr,方位向速度为vx.由于对慢速目标进行检测,可以认为vx《va,vr《va.P到天线1和天线2的距离分别是
Tr为脉冲持续时间,f0为载波频率,γ为调频率,Re表示矩形窗函数。
天线1和天线2混频后的回波信号为
两副天线接收的回波数据分别经过距离向和方位向压缩后得到两幅复图像s1(t)和s2(t)。如果天线间距d、载机速度va和脉冲重复频率prf之间满足DPCA条件,将s1(t)时移τ(τ=m/prf)时刻,即时移m个脉冲后,与s2(t)相减,就得到了杂波对消特性,
其中,λ是波长,K'是和目标后向散射系数有关的常数,Ts是合成孔径时间。
2 单通道SAR数据抽取为两通道SAR数据
合成孔径雷达照射全场景时,方位向相干积累脉冲个数需满足,
其中,Nazi为方位向相干积累脉冲个数,Ls为合成孔径长度,l为场景沿航迹向长度,va是载机飞行速度,prf是脉冲重复频率。当方位向相干脉冲积累个数较多,使回波数据在方位向有冗余时,可对方位向数据进行抽取,即重频需要满足
其中,一般n≥12为正整数,Bd=2va/D(D为天线方位向孔径大小)为地杂波谱宽。经过抽取得到的n路数据其脉冲重复频率是未抽取前的1/n.每路数据各自包含非重复的相等的相干积累脉冲个数,且各路之间间隔相等的脉冲个数。另外,考虑到抽取后数据的多普勒模糊和距离模糊,prf需要满足
其中,vr为目标径向速度,W为天线高低向的孔径长度,Rs为场景中心斜距,β为雷达下视角。式(9)与式(8)联合可得
理论上,prf只要能满足式(10)的要求,就可以对回波数据在方位向进行多抽1(n路数据)而成像。理想情况下,在雷达平台没有运动误差、地面场景较平坦,即杂波起伏不大时,对抽取后的数据补偿后再进行DPCA处理,就可以完成地面低速运动目标的检测。其中,动目标检测性能主要由抽取后的数据之间的相关性决定,相关性越高,检测性能越好。
2.1 单通道仿真回波数据抽取为两通道SAR数据
该方法把仿真得到的单通道原始回波数据近似为满足DPCA条件的两通道数据。由于该仿真数据的prf=6*Bd,其中Bd=2va/D(D为天线方位向孔径大小)为地杂波谱宽,故原始回波数据具有冗余信息。文中采取对原始回波数据进行2抽1,即利用原始回波数据在方位向的冗余性,抽取在奇数次序方位脉冲位置上的数据组成C1路信号,在偶数次序方位脉冲位置上的数据组成C2路信号。经过抽取得到的两路数据其脉冲重复频率是未抽取前的一半。这样,C1,C2两路信号近似为满足B=va/prf(B为等效的C1,C2两路通道的天线间距)条件的两通道数据,如图2所示。经过处理后,进一步提高了两幅复SAR图像的相关性。与文献[5]相比,文中方法是在方位向上每隔一个脉冲抽取数据,并且是直接对距离压缩前的回波数据抽取,两路数据间只相差一个脉冲,然后截取两路数据的重叠部分,故数据之间相关性较高。其中相关系数的计算如式(11)
其中,z1,z2为抽取后得到的两幅SAR图像,表示取共轭,E表示数学期望算子。
用该方法对仿真数据进行处理,其流程图,如图3所示。
2.2 实测单通道SAR数据近似为两通道SAR数据
与上述处理仿真数据一样,对实测单通道SAR数据进行类似的抽取,区别是这里直接对SAR图像进行处理,相关系数的计算公式同上,其流程图,如图4所示。
3 仿真实验
通过实验可观察系统模型各变量变化的全过程。为了寻求系统的结构和参数,常常要在仿真模型上进行多次实验。在系统的设计阶段,人们大多利用计算机进行数学仿真实验,因为修改、变换模型比较方便和经济。在部件研制阶段,可用已研制的实际部件或子系统去代替部分计算机仿真模型进行半实物仿真实验,以提高仿真实验的可信度。在系统研制阶段,大多进行半实物仿真实验,以修改各部件或子系统的结构和参数。在个别情况下,可进行全物理的仿真实验,这时计算机仿真模型全部被物理模型或实物所代替。
3.1 对仿真数据
仿真参数为:雷达运动平台速度va=200m/s,工作波长λ=0.03 m,天线方位向孔径长度为3 m,天线高低向孔径长度为3 m,脉冲重复频率prf=800 Hz,场景中心斜距Rs=7 000 m,平台高度h=4.500 m,场景沿航迹长度为420 m,发射带宽fB=15 MHz,采样频率fs=30 MHz.动目标径向速度vr=-2 m/s,方位向速度vs=2 m/s,方位向初始位置x0=3 m,目标斜距Rc=7 000m.信杂比SCR=-6 dB,杂噪比CNR=30 dB.SAR采用正侧视工作方式。按式(11)计算得出,经过抽取得到的两幅复SAR图像的相关系数为0.996 4.
下面给出仿真结果图。其中,图5为仿真的数据单通道的原始SAR图像,图6为仿真数据抽取后的得到的两幅SAR图像,图7为DPCA处理后动目标检测结果,图8为杂波相消的改善因子图。
3.2 对实测数据
数据来源于某机载三通道SAR系统,雷达工作于X波段,正侧视工作。所选取的数据覆盖了一条公路,公路上有几辆汽车在行驶,如图7所示。实测数据参数如下:运动平台速度va=115 m/s,工作波长A=0.033 9 m,相邻孔径中心间距d=0.559 m,脉冲重复频率prf=1 000 Hz,平台高度h=4 916 m,发射带宽fB=40 MHz,采样频率fs=60 MHz.按式(11)计算得到,经过抽取得到的两幅复SAR图像未截取重叠部分前的相关系数为0.9045,截取重叠部分后相关系数为0.911 8.由于录取实测数据时,雷达平台难免存在运动误差和地面场景杂波起伏等因素,抽取得到的两幅图像的相关系数不如仿真数据高。
仿真结果如图9~图11所示。其中,图9为实测数据的单天线原始SAR图像,图10为实测数据抽取后得到的两幅SAR图像,图11为DPCA处理后检测结果。计算得到杂波相消的改善因子为18.048 dB.
4 结束语
文中方法通过方位向数据抽取,将单通道数据近似为满足DPCA条件的两通道SAR数据。针对仿真数据和实测数据,利用DPCA方法实现杂波抑制和动目标检测。在没有多通道数据的情况下,该方法为利用单通道数据进行强杂波背景下地面低速运动目标检测提供了一种思路。此方法实现简单,检测性能好,且减少了系统成本和时间。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。