基于FM 1702SL的射频读写器系统设计及工作原理

时间:2011-08-25

0  引言

  读写器即 射频标签读写设备是射频识别系统的两个重要组成部分(标签与读写器)之一。射频标签读写设备根据具体实现功能的特点也有一些其他较为流行的别称,如:阅读器(Reader),查询器(Interrogator),通信器(Communicator),扫描器(Scanner),读写器(Reader and Writer),编程器(Programmer),读出装置(Reading Device),便携式读出器(Portable Readout Device),AEI设备( Automatic Equipment Identification Device)等。 通常情况下,射频标签读写设备应根据射频标签的读写要求以及应用需求情况来设计。随着射频识别技术的发展,射频标签读写设备也形成了一些典型的系统实现模式,本章的重点也在于介绍这种读写器的实现原理。 从基本的原理角度出度,射频标签读写设备一般均遵循如图所示的基本模式。

  读写器即对应于射频标签读写设备,读写设备与射频标签之间必然通过空间信道实现读写器向射频标签发送命令,射频标签接收读写器的命令后做出必要的响应,由此实现射频识别。此外,在射频识别应用系统中,一般情况下,通过读写器实现的对射频标签数据的无接触收集或由读写器向射频标签中写入的标签信息均要回送的应用系统中或来自应用系统,这就形成了射频标签读写设备与应用系统程序之间的接口API(Application Program Interface)。一般情况下,要求读写器能够接收来自应用系统的命令,并且根据应用系统的命令或约定的协议作出相应的响应(回送收集到的标签数据等)。 读写器本身从电路实现角度来说,又可划分为两大部分,即:射频模块(射频通道)与基带模块。

1  系统设计
  系统框图如图1所示,系统由MCU、键盘、EEPROM、FMl702SL、液晶屏、485通信模块组成。MCu控制FMl702对Mifare卡进行读写操作,再根据得到的相应数据对液晶屏、EEPROM进行相应的操作。MCU 与PC机通过485,总线通信,即使PC机与MCU之间通信发生异常,MCU也可以独立工作,在与PC机通信恢复之后,MCU可以将备份在EEPROM中的信息再传给PC机。

  P8912C931是一款单片封装的微控制器。P89LPC931采用了高性能的处理器结构,指令执行时间只需2~4个时钟周期。P89LPC931集成了许多系统级的功能,这样可大大减少元件的数目和电路板面积,并降低系统的成本。EEPROM用的是FM24C64L,它是一款以I2C为操作方式的存储芯片。液晶驱动芯片是PCF8576,也是以I2C为操作方式。整个系统用12V电源供电,再由稳压芯片2576稳压成3.6V。

2  工作原理

  Mifare卡包含一片容量为8K位EEPROM,为16个扇区,每个扇区为4块,每块16个字节,以块为存取单位,每个扇区有独立的一组密码及访问控制。每张卡有序列号,为32位。无电源,自带高频天线,内含加密控制逻辑和通讯逻辑电路

  信息存储在Mifare卡里,读写器与Mifare卡通过各自的天线建立起二者之间非接触信息传输通道。当Mifare卡进人系统的工作区域时,读写器向Mifare卡发一组固定频率的电磁波,Mifare卡内有一个LC串联谐振电路,其频率与读写器发射的频率相同,在电磁波的激励下,Lc谐振电路产生共振,从而使电容内有了电荷,在这个电容的另一端,接有一个单向导通的电子泵,将电容内的电荷送到另一个电容内储存,当所积累的电荷达到2V时,此电容可做为电源为其它电路提供工作电压,将卡内数据发射出去或读取读写器的数据。通过调整天线驱动电压可以改变通信的长距离。

  FMl702SL与MCU的接口电路

    过SPI总线通信的,采用中断工作模式。需要注意的是在FMl702SL复位后,必须进行初始化程序以便初始化SPI接口模式,而且可以同步MCU和FMl702SL的启动工作。
3  读写器天线的设计
    根据互感原理可知,半径越大、匝数越多,读写器上的天线和卡上的天线的互感系数就越大。根据国际标准的要求,卡和读写器的通信距离为10cm。天线可等效成R、L、c并联回路,示意图如图3所示,图3中,L为天线的自感,R为天线的等效电阻,C为天线的分布电容。图4为天线的PCB图。 

  设计天线时还要注意天线的品质因数。国际标准ISOl4443规定无论TYPEA或TYPEB非接触式IC卡,读写器和卡之间的数据传输速度为106kbit/s,载波的频率f0=13.56MHz,因此,每一位的数据维持的时间tO=106/104k=9.44μs,TypeA类射频卡智能卡读写器到射频卡的信号编码是修正米勒编码,传送每一位数具有t=3μs的载波中断,因此,该信号的带宽近似为B=lT=1/3μs=333.333kHz,故天线的品质因数Q= fO/B=13.56 MHz33.333kHz=35,天线的传输带宽与品质因数成反比关系。

4  读写器对卡的操作流程

  FMl702SL内部有8个寄存器页,每页有8个寄存器,每个寄存器有8位数据。这些寄存器是统一编址的,从Ox00~0x3F,MCU通过SPI接口与 FMl702SL通信对这些寄存器进行设置。

  必须注意的是,MCU对卡片的操作不是简单的一条指令所能完成的,其中必须有对FMl702SL硬件内部寄存器的设置。操作步骤如图5所示。

  (1)复位初始化FMr702SL:初始化FMl702SL的SPI接口,初始化FMl702SL定时器,设置定时器控制寄存器,打开Txl、TX2。

  (2)Request(请求):当一张Mifare卡片处在卡片读写器的天线的工作范围之内时,程序员控制读写器向卡片发出R:EQUEsT all(或REQUEsT std)命令。卡片的ATR将启动,将卡片BLOCkO中的卡片类型(TagType)号共2个字节传送给读写器,建立卡片与读写器的步通信联络。如果不进行复位请求操作,读写器对卡片的其它操作将不会进行。

  (3)Antieollision LOOp(防冲突机制):如果有多张Mifare卡片处在卡片读写器的天线的工作范围之内时,读写器将首先与每一张卡片进行通信,取得每一张卡片的系列号。由于每一张Mifare卡片都具有其的序列号,决不会相同,因此读写器根据卡片的序列号来保证只对一张卡操作。

  (4)Select Tag(选择卡片):完成了上述二个步骤之后,读写器必须对卡片进行选择操作。执行操作后,返回卡上的SIZE字节。

  (5)Authentication(三次相互验证):经过上述三个步骤,在确认已经选择了一张卡片时,读写器在对卡进行读写操作之前,一必须对卡片上已经设置的密码进行。

  (6)读写操作:对卡的操作是读、写、增值、减值、存储和传送等操作。


  

参考文献:

[1]. FM24C64L datasheet https://www.dzsc.com/datasheet/FM24C64L_329590.html.
[2]. PCF8576 datasheet https://www.dzsc.com/datasheet/PCF8576_318624.html.
[3]. PCB datasheet https://www.dzsc.com/datasheet/PCB_1201640.html.


上一篇:新理论线损管理信息系统计算软件设计方案
下一篇:分析无线电台抗电磁干扰的设计与应用

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料