浅谈如何为微控制器增加PWM/模拟通道

时间:2011-08-25

    微控制器是将微型计算机的主要部分集成在一个芯片上的单芯片微型计算机。微控制器诞生于20世纪70年代中期,经过20多年的发展,其成本越来越低,而性能越来越强大,这使其应用已经无处不在,遍及各个领域。例如电机控制、条码阅读器/扫描器、消费类电子、游戏设备、电话、HVAC、楼宇安全与门禁控制、工业控制与自动化和白色家电(洗衣机、微波炉)等。

    在片上PWM(脉冲宽度调制)资源方面,低成本的8位单片微控制器是很吝啬的。设计人员在采用PWM资源时,经常被迫要牺牲一个捕捉/比较通道或定时器通道,因为PWM通道要共用相同的片上资源。很多基于微控制器的独立电气设备都不会使用同步串行端口。因此,可以用微控制器的波特率发生器和并/串转换器部分来生成位模式,构成一个256位的PWM形式。然后用RC滤波器过滤这个PWM输出,提取出一个模拟信号。同步通信没有异步通信的起始位和停止位,因此位模式可以产生出长周期的高电平或低电平。

可以用片上未用的同步串行端口产生PWM信号

  图1,可以用片上未用的同步串行端口产生PWM信号,并将其转换为一个慢速运动的模拟信号。

    采用这种概念,可以用一个十进制数165产生原数据(图2)。一个PWM转换周期包含生成的256位,即32字节。“on”位的数量对应于转换为PWM的原数据值。因此,对于165位的原数据,有165位个on,91位个off。要产生一个165位的on周期,前20个字节(即160位)传送为0×ff个on态字节。诀窍在于第21个字节(或过渡字节)的组成。该字节的一些LSB(有效位)为1,其余为0,构成所需要的on周期长度。在这一例子中,电路需要5个以上的on位:160+5=165。因此,过渡字节的形式应为0001111b(字节=0×1f)。

采用这种概念

  图2,采用这种概念,可以用十进制值165产生原数据。

  图3以流程图的形式表示这个过程。通过选择晶体、PLL(锁相环)和波特率,可以根据自己的应用修改PWM频率。用简单的RC滤波器就可以将PWM转换为一个慢速运动的模拟值。虽然本方法描述的是一个8位PWM,但也可以修改每个PWM周期的总位数,从而增加或降低分辨率。相应地增加或减少了转换时间。

通过选择晶体

  图3,通过选择晶体、PLL和波特率,可以针对自己应用修改PWM频率。

    代码采用的是Microchip公司的PIC18F4525,它用一只4MHz晶体,以及用于同步串行通信的10kHz波特率,获得10000/256=39.31Hz的PWM频率。可以用一个0.1s的RC滤波器对其作滤波,对慢速运动的模拟信号来说这已足够,如运动控制应用的速度设置点。采用20MHz晶体时,可以实现大于1.5MHz的同步串行波特率,以及数kHz的PWM频率。

 


  
上一篇:浅谈智能天线侧RRU通道功率告警导致的通话问题解决方法
下一篇:浅谈基于频带聚合的LTE-Advanced系统设计方案

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料