1 引言
随着信息科学的飞速发展,数据采集和存储技术已经是数字信号处理中非常重要的环节,将决定整个系统的性能。它广泛应用于雷达,通信,遥测遥感等领域。它己经成为人们获得外界信息的重要手段。基于总线的数据采集与存储系统,由于可靠且易于实现、经济等优点,得到了广泛的应用。但当数据传输率很高时,保持高速数据存储过程的可靠性、实时性将会成为一个比较棘手的问题。为此一些厂商提供了双总线技术、64位/66MHzPCI总线系统来解决这问题。但这些技术较为昂贵,且忽略了现有的硬件设备。经过实验与探索,我们选用ADLINK公司的PCI-7300A_RevB超高速数字I/O卡,利用现有的单(32位/33MHz)PCI总线的计算机系统构成低成本的硬件平台,并利用自己开发的软件系统,终实现了高速(45Mbytes/sec)持续的数据采集于存储。
2 硬件组成及注意事项
为了利用现有的硬件设备,降低成本;我们采用ADLINK公司出品的PCI-7300A_RevB超高速数字I/O卡作为数据采集部分。该卡的主要特性如下:
·32位数字I/O通道
·32位PCI总线
·通过触发信号控制数据采集操作的开始。
·100针SCSI型连接器
·分散/聚拢方式的DMA
·传输速率80Mbytes/sec
要实现实时高速的数据存储,使用的一般的硬盘是不行的。所以我们选用希捷公司出品的型号为ST3146707LC的SCSI硬盘,该硬盘的容量是146GB,能满足记录大量数据的需要,其转速为10Krpm。相应的SCSI硬盘控制器,选用Adaptec公司出品的型号为Adaptec19160的Ultra160-SCSI硬盘控制器。
在搭建硬件平台的过程中有些问题是必须注意的,否则系统不能正常工作。首先,PCI-7300A_RevB卡虽然采用分散/聚拢方式的DMA,但它对CPU资源的占用率是非常高的。经过实验证明,要保证整个数据采集与存储系统正常工作,只能使用奔四1.7G以上的计算机系统。其次,Windows系统允许多个设备共享一个中断请求号(IRQ)。为了保证存储过程的实时性,必须确保SCSI硬盘控制器和PCI-7300A_RevB卡使用不同的IRQ。可以在主板BIOS里把Pnp(即插即用)/PCI设备的IRQ进行手动配置。Windows2000ServicePack2(SP2)及早期版本不支持大于137GB容量的硬盘。须要先安装ServicePack3,再在注册表(HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Atapi\Parameters)里添加一个REG_DWORD类型的参数EnableBigLba,并把值设成0x1。这样146GB的硬盘才能工作正常。
3 软件设计
软件设计直接决定硬件是否能正常工作,以及能否充分发挥硬件的性能。
3.1 PCIS-DASK及双缓冲区模式的工作原理
PCIS-DASK是ADLINK公司为自己的产品提供的驱动程序包,提供了专门用于实现高速数据采集的连续多缓冲区操作的一组API函数。通过这组API函数,我们可以按照双缓冲区的原理,非常方便地实现对数据的实时、高速、连续的采集与存储。
双缓冲区模式,在工程上称为“乒乓”缓冲区模式。跟常用的单缓冲区模式相比双缓冲区模式的优点是,它可以使用较小容量的内存,不间断地缓冲几乎无限量的数据(输入与输出端需协同工作)。这种缓冲区模式的工作原理是:在内存里开辟两块容量相等的缓冲区(以下将分别它们称为缓冲区和第二缓冲区)作为连续数据输入的缓冲区。工作开始时,数据采集卡首先将数据写入缓冲区中,在数据采集卡开始把数据写入第二缓冲区的同时,用户程序可以根据自身需要取出缓冲区中的数据做特定的处理。当第二缓冲区被写满后,数据采集卡回到缓冲区的起始处,以覆盖旧数据的方式,把新数据写入缓冲区中;与此同时用户程序取出第二缓冲区中的数据。整个数据采集处理过程可以如此不断地循环进行下去。
3.2 板卡驱动设置及注意的问题
对板卡驱动的深刻理解是编写好数据采集于存储程序的前提。在连续数据输入模式下,板卡驱动程序需要在系统内存里开辟一块缓冲区做为二级缓存,用户可以设置该缓冲区的大小。方法是:从菜单开始/程序/PCI-DASK/NuDAQPCIconfigurationUtility打开DASK2000DeviceDriverConfiguration对话框,从CardType组合框中选择Pci7300A_RevB项,在DI栏输入你想要开辟的缓冲区容量,点击OK按钮完成设置。需要注意的是板卡驱动设置的缓冲区(简称驱动缓冲区)容量与用户程序开辟的缓冲区(用户缓冲区)容量存在着一定关系。经过我们多次实验,得出驱动缓冲区容量大约是用户缓冲区的3倍;因此,当驱动缓冲区过小,而用户缓冲区较大时,会出现错误。
过小,而用户缓冲区较大时,会出现错误。
3.3 VisualC++开发环境的设置
为了使用PCIS-DASK提供的实现连续多缓冲区操作的API函数,以及初始化板卡、设置板卡工作方式的API函数;需要VisualC++连接PCI-DASK提供的动态连接库(Pci-dask.lib)。具体方法是:打开工程,从菜单Project/Setting…打开ProjectSetting对话框,切换到Link选项卡,在Object/librarymodules拦中添加Pci-dask.lib,点击OK按钮完成设置。在工程中加入头文件Dask.h.。
3.4 多线程的实时数据存储软件设计
在要求高速、实时和连续采集和存储的情况下,一方面要求系统不间断地进行数据采集,同时还要进行数据实时地存储,否则将会丢失数据,造成数据不完整。为了解决这个问题,我们在软件实现中,引入了Windows的多任务处理技术(multitasking)。在程序里创建两个工作线程分别完成数据采集和数据存储工作。缓冲方式采用上面所说双缓冲区模式,当数据采集线程(SampleThreadProc)把采集到的数据写入缓冲区时,数据存储线程(StorageThreadProc)把第二缓冲区的数据存入SCSI硬盘;当数据采集线程把数据写入第二缓冲区时,数据存储线程把缓冲区的数据存入SCSI硬盘;如此循环。另外通过实际实验测试Adaptec19160Ultra160-SCSI硬盘控制器,配合希捷公司出品的ST3146707LCSCSI硬盘,持续写入速率能达到80Mbytes/sec。远大于45Mbytes/sec的采集速率。所以当数据采集线程写满其中一个缓冲区之前,数据存储线程已经把另一个缓冲区里的数据存储入SCSI硬盘。所以这种方法能保证数据的实时性、完整性和连续性。其程序流程图如图1。
3.5 软件实现
由于篇幅所限,下面仅给出程序中的代码:
4 性能评估
为了验证该系统的性能,我们对其所能达到的采集和存储速率、以及数据正确率进行了测试和分析。
在测试中我们使用了自己设计的数据源,它能以任意速率发送32位的线性数字信号。另外编写了一个数据检测程序,可给出存储的数据的正确率和显示数据错误的地方。经过长时间的测试,得到结果是:数据源发送速率为45Mbytes/sec时,存储的数据能达到100%的正确率。当数据源发送速率为50Mbytes/sec时,数据有错误。
经分析原因出在数据采集过程,当有很多位发生进位时(如FFFFFFFF→00000000)采集卡不能正确地采样数据。实际上经过特殊处理后,这样的数据还是可以使用的。
计算机32位/33MHzPCI总线带宽典型的输出数据吞吐量为100Mbytes/sec,输入数据吞吐量为120Mbytes/sec,而系统中其他的PCI设备也需要占用一定的带宽,并且数据采集和存储过程都要占用PCI总线带宽;因此,45Mbytes/sec(100%正确率)的采集和存储速率已经接近系统和硬件的极限。
5 结语
本文介绍的实现方法易于实现,且充分挖掘了硬件的性能,可满足对数据采集与实时存储速率要求较高(≤45Mbytes/sec)的应用。由于使用的硬件平台是普通的奔四级PC机,所以开发成本较低。另外文中对实现过程中应注意的问题作了详细说明并给出编程部分,使读者很容易在较短时间内开发出满足自己需要的系统。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。