一种交流电机伺服控制器设计

时间:2011-06-07

  交流感应电机因其结构牢固、运行稳健可靠、成本低廉和高效率等而被广泛使用。但是交流电机的可控制性不如直流电机,而在很多应用中有定位、转距控制、速度控制等要求。为了实现此功能并提高控制,需要采用闭环控制系统和较为复杂、有效的控制算法,这些复杂的控制算法中包含了大量的数据运算及系统的实时性要求,对微处理器运算能力和速度要求更高。数字信号处理器(DSP)的出现使得实现电机控制系统的模块化和全数字化成为可能。本文以TMS320F812为控制器,设计了一种性能优良的交流电机控制系统。

  1 系统硬件总体设计

  交流电机调速系统主要由功率变换器、控制器、电流和位置检测单元以及交流电机组成。功率变换器由交流电整流后的直流电供电,向交流电机提供旋转所需的能量。控制电路是系统中枢,综合处理速度信号、速度反馈信号及电流传感器、位置传感器的反馈信息,控制功率变换器主开关的工作状态,实现对交流电机运行状态的控制。

  2 交-直-交电压型变频器的主电路

  交-直-交电压型变频器是中小容量、通用性变频器的主要形式,其主电路如图1所示,由交-直变换电路,直-交变换电路和能耗制动电路组成。

  2.1 整流电路

  整流电路(rectifying circuit)把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。

    整流电路的作用是将交流降压电路输出的电压较低的交流电转换成单向脉动性直流电,这就是交流电的整流过程,整流电路主要由整流二极管组成。经过整流电路之后的电压已经不是交流电压,而是一种含有直流电压和交流电压的混合电压,习惯上称单向脉动性直流电压。

   整流电路输出的单向脉动性直流电特性有所不同,半波整流电路输出的电压只有半周,所以这种单向脉动性直流电主要成分仍然是50Hz的,因为输入交流市电的频率是50Hz,半波整流电路去掉了交流电的半周,没有改变单向脉动性直流电中交流成分的频率;全波和桥式整流电路相同,用到了输入交流电压的正、负半周,使频率扩大在倍为100Hz,所以这种单向脉动性直流电的交流成分主要成分是100Hz的,这是因为整流电路将输入交流电压的一个半周转换了极性,使输出的直流脉动性电压的频率比输入交流电压提高了一倍,这一频率的提高有利于滤波电路的滤波。

  在SPWM变频器中,大多采用桥式全波整流电路。在中小容量变频器中,整流器件采用不可控的整流二极管或二极管模块,如图1中的D1~D6是整流器件的一般选择。

  (1)反向电压

  2.2  滤波及限流电路

  (1)滤波电路   由于受到电解电容的电容量和耐压能力的限制,滤波电容通常由若干个电容器并联成一组,又由2个电容器组串联而成,如图1所示。又因为电解电容的电容量有比较大的离散性,故电容器组的电容量不能完全相等,这将使它们所承受的电压不相等。为了使其承受的电压相等,在电容器组旁各并联一个阻值相等的均压电阻,如图1中R1、R2。

  (2) 限流电路   串联在整流桥和滤波电容器之间,由限流电阻和断路开关组成。变频器在接入总电源之前,滤波电容上的直流电压为0 V。当直流电压增大到一定程度时,令断路开关SS接通,把RS切出电路,SS大多由晶闸管构成,在这个容量较小的变频器中,选择继电器即可。

  2.3 三相逆变桥电路

  三相逆变桥的功能是把直流电转换成频率可调的的三相交流电,由逆变电路和续流电路组成的。

  (1)逆变电路   在图1中,由开关器件V1~V6构成的电路,常称之为逆变桥。V1~V6接受控制电路SPWM调制信号的控制,将直流电逆变成三相交流电。当电源电压为220 V时,整流后直流电压:


  (2) 续流电路   图1中并联在开关管的6个二极管构成续流电路,其功能是为电动机绕组的无功电流返回直流电路时提供通路;当频率下降、同步转速下降时,为电动机的再生电能反馈至直流电路提供通路;为电路的寄生电感在逆变过程中释放能量提供通路。

  2.4 能耗制动电路

  所谓能耗制动,即在电动机脱离三相交流电源之后,定子绕组上加一个直流电压,即通入直流电流,利用转子感应电流与静止磁场的作用已达到制动的目的

  在变频调速系统中,电动机的降速和停机通过逐渐减小频率实现。在频率刚减小的瞬间,电动机的同步转速随之下降,由于机械惯性的原因,电动机的转子转速未变。当同步转速低于转子转速时,转子电流的相位几乎改变了180°,电动机处于发电机状态。与此同时,电动机轴上的转矩变成了制动转矩,使发电机的转速迅速下降。过高的直流电压将使各部分器件受到损害。因此当直流电压超过一定值时,就要提供一条放生回路,将再生的电能消耗掉。能耗制动电路便是专门用来消耗电动机再生电能的电路。能耗制动电路由制动电阻和制动单元开关管组成,在图1中,介于滤波电路和逆变电路之间的电路是能耗制动电路。制动电阻R是专门用于将电动机的再生电能转换成热能而消耗掉,选择器件时主要考虑电阻阻值以及功率,一般情况下,阻值的大小以使制动电流不超过变频器额定电流的一半为宜。

  根据左手定则确定出转子电流和恒定磁场作用所产生的转矩方向与转子转速方向  能耗制动单元英威腾DBU系列。相反,故为制动转矩,此时电机把原来储存的动能或重物的位能吸收后变成电能消耗在转子电路中。能耗制动就是将运行中的电动机,从交流电源上切除并立即接通直流电源,在定子绕组接通直流电源时,直流电流会在定子内产生一个静止的直流磁场,转子因惯性在磁场内旋转,并在转子导体中产生感应电势有感应电流流过,并与恒定磁场相互作用消耗电动机转子惯性能量产生制动力矩,使电动机迅速减速,停止转动。


  取100 W即可,可选择珐琅大功率电阻510 Ω/200 W。

  制动单元一般由功率管、电压取样与比较电路以及驱动电路组成。由于电压较大,应选用电流互感器将电流采样后转换为0~3 V的电压,经过2812的AD单元后与设定值进行比较,如果达到要求,则2812输出一路信号通过光电耦合器后驱动功率管打开,进行能耗制动。功率管经常选用GTR或IGBT,但本系统功率较小,选用功率较大的三极管即可。要求如下:

  2.5 电流采样电路

  系统中的电流检测环节是电流传感器,该电流传感器是利用霍尔效应和磁平衡原理制成的一种电流传感器,能够测量直流、交流及各种脉冲电流,同时在电气上高度绝缘。滤波电路的输出在进入DSP和AD环节之前,为了防止电压太大损坏DSP,还需经过一个钳位电路,DSP芯片使用3.3 V 供电,因此系统设计了3.3 V钳位电路,使得输入AD转换模块引脚的模拟信号不超过3.3 V,如图2所示。

  2.6 光电编码电路

  光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90?的两路脉冲信号。

  测速是速度闭环控制系统的关键。本系统采用光电编码器,有A相、B相、Z相三路输出。其中A相与B相用于测速,它们的相位差为90°,每转一圈输出2 048个脉冲;而z相脉冲为每转一圈输出一个脉冲;脉冲的幅值为15 V。光电编码器的A 相和B相经光电隔离后进入74LS14转换成幅值较低的脉冲信号,输入到DSP的编码器接QEP1和QEP2引脚。其电路图如图3所示。

  2.7 温度检测电路

  电路中R1、R2、R3采用精密电阻,用来减小温漂影响。为了消除由于铂热电阻阻值较小、受连接导线的电阻及接触电阻对测量产生的影响,采用三线制接法,调整R1可以使电桥平衡。将电桥输出接入OP07,反相放大40倍后接入DSP的AD单元。通过计算出铂电阻阻值,在系统运行时,先查表得出特定温度铂电阻的阻值(如100℃),当计算的铂电阻阻值大于这一阻值时,停止DSP工作并报警,保护相关的元器件。如图4所示。

  3  DSP与硬件部分的连接

  在本系统中,DSP的主要功能是根据需要驱动逆变桥的6个开关管的通断并且根据采样信号来打开或关断能耗制动电路的功率管。由于DSP输出的PWM信号驱动能力较弱,且为了实现低压数字电路和高压模拟电路之间的电气隔离,需要采用光耦隔离,另外,DSP芯片输出信号频率较高,需要反应速度较快的光耦。通常按低电平开通高电平截至的原则设计接口电路。实际应用中,某些开关可能不用,但输入信号加上拉电阻可以保证其关断。

  实验结果表明,系统达到了预期的设计目标,得到的实验数据体现了硬件实现的可行性,为下一步的实际运用打下了良好的基础。


  
上一篇:基于自动化控制的建筑能源管理与能耗监测系统
下一篇:设计研究基于dsPIC30F2010的土壤水分测量仪

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料