通用数字信号处理器DSP以其很强的数据处理能力使其在高速数字信号处理方面得到广泛的应用,但是它的通信接口控制能力比较弱;例如TMS320VC5402带有2个串口,串口常被语音接口占用。当TMS320VC5402独立构成一个处理单元时,往往需用与外设交换一些数据,通信能力弱就会影响DSP 的应用。在语音识别系统中,用TMS320VC5402采集和处理语音信号,然后将识别的结果通过串口传送到PC机作具体控制处理。由于系统的实时性要求较高,如何实现TMS320Vc5402与PC机高速和可靠的通信问题就变得尤为重要。
作为一个实际的DSP应用系统,为了实现UART功能,必须通过外电路的扩展来完成,可以用可编程逻辑器件来实现该功能,即利用C5402的XF、BIO通用I/O口构成串口,由软件来设计波特率,但CPU比较繁忙时不适合这种方法。本文是采用一片TI公司的TL16C750来完成的。
1 异步通信芯片TL16C750
异步通讯芯片TL16C750具有集成度高、使用方便、兼容性好等特点。它的串口主要完成2项功能,即把从外部设备或调制解调器接收进来的串行数据转换成并行数据,以及把CPU的并行数据转换成串行数据以利发送。在正常操作的过程中,CPU每时每刻都可以读TL16C750的完成状态。状态信息TL16C750传输操作的类型和状态,还包括错误状态,如奇偶校验、溢出、格式错误或停顿指示等。另外TL16C750还具有完整的调制解调器控制功能,包括:允许发送(CTS);请求发送(RTS);数据设备准备好(DSR);数据终端准备好(DTR);振铃指示(RI);载波检测(DCD)。
TL16C750异步通信芯片主要特点如下:
●管脚与TL16C550B/C兼容;
●可由软件设定16字节或64字节的FIFO以减少CPU中断;
●可达1M的波特率,其波特率发生器可编程;
●具有可编程的串行数据发送格式:
数据位长度为5、6、7、8;
具有偶校验、奇校验或无校验模式;
停止位长度为1、1.5、2;
●采用44引脚PLCC(Plastic Leaded Chip Carrier)封装。
1.1 TL16C750的引脚功能
TL16C750的引脚图如图1所示,各主要引脚的功能说明如下:
A0~A2:片内寄存器的选择信号;
D0~D7:双向8位数据线;
CS0、CS1、CS2:输入片选信号,当CS0=CS1=1且CS2=0时,TL16C750被选中;
ADS:是地址选通信号,该脚有效时,可将CS0、CS1、CS2及A0、A1、A2锁存在TL16C750内部;
XIN、XOUT:外部时钟端,该两脚可接晶振或外部时钟信号;
RXRDY是接收准备好信号,当TL16C750已经从串行输入端接收了一个字符时,该信号失效,在中断方式时可作为中断请求信号;
TXRDY是发送准备好信号,当TL16C750允许发送且发送缓冲区为空时,该信号有效,在中断方式时可作为中断请求信号。
1.2 TL16C750的片内寄存器
TL16C750内部共有11个寄存器,如表1所示。这些寄存器分别用于实现通信参数的设置、对线路及MODEN的状态访问、数据的发送和接收以及中断管理等功能。编程人员可由A0、A1、A2三条片内寄存器选择线和线路控制寄存器的除法数锁存器访问位DLAB一起通过多路复用进行访问或控制TL16C750的任何一个寄存器。表1给出了访问这些寄存器时DLAB和A0、A1、A2的状态。因为接收/发送缓冲寄存器的DLAB、A0、A1、A2各位都相同,因此还需要通过读/写信号来加以区分:鸡使用IN指令时,接收缓冲寄存器被访问,鸡使用OUT指令时,发送缓冲寄存器被访问。
下面对与TMS320C50和PC机通信有关的寄存器做一简单介绍。
线路控制寄存器(LCR)用来存放串口传送的二进制位串行数据格式,LCR是一个8位寄存器,各位的定义如下:d0d1是字长选择位,若d0d1=00,传送的字长为5位;d0d1=01时字长为6;d0d1=10时字长为7;d0d1=11时字长为8.d2位是停止位选择,d2=0时停止位为1位;d2=1时停止位为1.5位。d3位是校验有效位,d3=0时校验有效;d3=1时校验无效。d4是校验类型位,d4=0时进行奇校验;d4=1时进行偶校验。d7位(DLAB)是锁定特率发生器位,d7=1时访问波特率因子寄存器;d7=0时访问其它寄存器。
线路状态寄存器(LSR)用于记录串行数据发送和接收过程的状态信息,CPU可在集体时候读取这些信息。该寄存器的状态位如表2所列。
表2 TL16C750寄存器的状态位
两个8位波特率因子寄存器可构成一个16位的波特率因子寄存器。TL16C750的内部波特率发生器可产生发送数据的时钟信号。波特率因子可以通过下列算式求出:
波特率因子=基准时钟频率/(16×波特率)
这个波特率发生器可以利用比较通用的三种不同频率产生标准的波特率。这三种不同的频率为1.8432MHz、3.072MHz和8MHz.可以任意选择写入波特率因子的高字节和低字节的顺序,但写入前必须置线路控制寄存器(LCR)的d7(DLAB)位为1.写入波特率因子后应将线路控制寄存器的d7恢复为0,以便访问其他寄存器。在外接晶振为1.8432MHz时,几种常用的波特率所对应的波特率因子寄存器的值如表3所列。
表3 波特率因子对应的波特率因子寄存器的值
2 TMS320C50与PC机串行通信的硬件电路
TMS320C50与PC机通信的硬件电路如图2所示。图中,TL16C750的CS0和CS1都接高电平,而CS2接TMS320C50的IS.IS是TMS320C50的外部I/O空间选择线,它和PS(程序空间选择)、DS(数据空间选择)一起来确定CPU所访问的空间。当TMS320C50使用IN、OUT指令对TL16C750的内部寄存器进行访问时,IS信号有效,TL16C750被选中。
当XIN、XOUT端外接1.8432MHz晶振时,TMS320C50以28400的波特率与PC机通信,所以波特率因子寄存器的低位的值应为02H,高位值为00H。
TL16C750的数据线D0~D7直接与TMS320C50的D0~D7数据线相连;TL16C750的片内寄存器选择线接TMS320C50的A0~A2.
由于TL16C750的读信号和写信号保持时间的典型值均为40ns,因此将TMS320C50的WR和RD直接连到TL16C750的WR1和RD1,为了避免与其它I/O端口发生冲突,在硬件电路设计中,将TMS320C50的RD信号线与两条高位地址线A15、A14及IS经一个与非门后再接到TL16C750的RD1端。实践证明:这样的设计在解决地址冲突的基础上对写信号性能也有一定的改善作用。TMS320C50的读信号也作了类似的处理。具体的电路如图3所示。
由于RS-232-C电路电平与CMOS电平不同,因此RS232驱动器与CMOS电平连接时必须经过电平转换。本系统采用MAX3232完成这一功能,MAX3232具有一个专有的低压降发送器输出级,在其以双电荷泵3.0~5.5V供电时,可获得真正的RS-232性能。该器件只需4个0.1μF小型外接电容,可在维持RS-232输出电平的情况下确保运行于120kb/s数据率,因此十分适合高速串行数据通信的场合。TL16C750的串行输入线(SIN)和串行输出线(SOUT)分别接MAX3232的R1OUT和T1IN,经电平转换后由MAX3232的T1OUT和R1IN连接到PC机的串口。
TL16C750与TMS320C50虽然可以通过查询的方式工作,但这样会降低系统的性能。笔者在本系统中利用RXRDY和TXRDY来引入外部中断,从而使系统工作在中断方式,这样就保证了TMS320C50和PC机的高速通信。由图2可知,RXRDY将产生外部0中断(INT0),而TXRDY将产生外部1中断(INT1)。
3 软件设计
该系统软件设计包括PC机、TMS320C50及TL16C750的初始化和通信协议等。下面将结合本系统的硬件给出TMS320C50初始化TL16C750的程序。初始化的主要任务是设置操作所需要的参数,这些参数包括串行通信时数据串的数据位数、停止位数、奇偶校验等。另外,还需要设置发送和接收的波特率及中断方式。
在本系统中,TL16C750的线路控制寄存器(LCR)的地址为8003H(A15=1,A14=0)。波特率设置为38400,波特率因子寄存器的高位是00H,低位为03H.通信格式为8位数据位,2位停止位,奇校验,线路控制寄存器的值(LCR)为07H.系统工作在中断方式,应允许接收就绪中断和发送缓冲区空中断,相应地,中断允许寄存器的值亦设置为03H.具体程序如下:
4 结束语
通过扩展串口完成TMS320C50与PC机通信时,其硬件接口简单,数据传送距离远、使用经济。该电路及其软件经与微机的通信实践证明,在波特率为38400时可实现与PC机的可靠通信。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。