随着电子技术的迅猛发展和绿色环保的要求,有分电器电子点火系统克服了机械式点火系统触点易烧蚀、高速时次级电压低、火花塞易积炭等缺陷。但仍存在着点火能量损失大、点火正时误差大、无线电干扰严重等不足。为克服这些不足,避一步提高点火性能,提高点火系统的可靠性和耐久性。下面介绍一种基于DSP的新型汽车无分电器点火装置。
DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是值得称道的两大特色。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。
1 系统构成
系统中央处理单元ECU由一片DSP和一片通用单片机组成。DSP主要用于对信号的采集、处理,控制算法实现,与辅助单元和PC机进行通讯;单片机主要用于系统监测和备用点火等。系统结构框图如图1所示。
系统采用了集成点火组件。点火组件用于完成闭合角控制、恒电流控制、过电压保护、停车断电保护等功能,并能通过缸序判别信号IGda、IGdb把点水信号Igt关入相应的点火驱动电路,产生点火确认信号IGf。
1.1 主CPU单元
TMS320F240 单芯片硬件架构上的一些特性对于高速信号处理及数字控制上的应用是必须且重要的,其使用次微米CMOS 技术制程使其功率散逸降至。其与传统的微处理机单芯片相较之下其具有下列的优点:
(1)执行速度快,整体效能佳,可达到真正的实时控制。
(2)特殊的硬件及指令设计,适用于高性能的控制。
(3)容易增加附属功能,很容易扩展外围。
(4)具有实时中断的看门狗定时器模块,可监控程序之运作。
(5)使用4 层的Pipeline 的程序运作及设计有指令延迟之功能
TMS320F240 为TI 公司所出品的定点式数字信号处理器芯片,具有强大的外围(64k I/O space、10 bit A/D Converter、Digital I/peripheral) ,芯片内部采用了加强型哈佛架构(Enhanced HarvardArchitecture),由三个平行处理的总线─程序地址总线(PAB)、数据读出地址总线(DRAB)及数据写入地址总线(DWAB),使其能进入多个内存空间。32位中央算术逻辑单元CALU;16位×16位并行硬件乘法器;内置544字×16位双端口数据/程序RAM,16K字×16位FLASH E2PROM;软件等待发生器的外部存储器接口模块,支持硬件等待状态;双10位高速A/D转换器;28个独立可编程的多路复用I/O引脚;基于锁相环的时钟模块;带实时中断的看门狗定时器模块;串行通讯接口;4级管道操作;8级硬件堆栈;6个外部中断;静态CMOS技术;4种低电源模式;频率为40MHz;多数指令周期为单周期;完成点火提前角的计算时间限于1ms,比通用微处理机快10~100倍,大大地提高了点火系统的实时性。
主CPU单元主要完成两大任务:一是确定当前工况下的点火提前角,产生点火控制信号IGt和汽缸判定信号IGda与IGdb;二是通过RS-232接口与PC机进行串行通信,主CPU可把采集的各种传感器的信号、发动机转速信号、故障代码等送到PC机中进行仿真与分析;PC机也可以把二进制程序代码及一些重要数据(如不同工况下的修正值等)送到主CPU的FLASH E2PROM单元。
TMS320F240扩展了四片CY7C169-25和一片8253,并采用74F148扩展外部中断源输入端。
1.2 监测和点火备用模块
监测和点火备用模块所使用的CPU是8751。该模块通过对各传感器信号、IGf信号等进行分析、诊断,对主CPU单元实施监测。当主CPU单元出现故障时,监测和点火备用模块立即接过点火控制权,并放弃监测工作。
8751单元扩展了2732、6264和8253各一片。采用一片AD574A和CD4051进行A/D转换,并用74LS148扩展了8个外部中断源输入端。
1.3 DSP数字控制器与PC机的串行通讯
TMS320F240 SCI模块支持CPU与使用标准NRZ格式的其它异步外设之间进行数字通信。SCI接收器和发送器是双缓冲的,具有独立的使能和中断时。SCI对接收的数据进行间断、奇偶性、超时、帧出错等检测。系统采用了RS-232异步串行通讯标准总线。
1.4 系统接口资源的分配
TMS320F240 DSP数字控制器与8751单片机提供的I/O接口与中断输入接口是有限的,为避免资源冲突,将外部的输入信号按表1进行优化分配。
表1 外部输入信号优化分配
IDL信号 | 空调开关 | G1 | G2 | Ne | 负荷 | 水温 | |
TMS320F240 MCS-8751 |
I/OPB2 P1.0 |
I/OPB3 P1.1 |
XINT2 INT1 |
XINT2 INT1 |
CAP1 T0+INT0 |
ADCIN3 A/D |
ADCIN2 A/D |
显示开关信号 | R-P | 起动信号 | IGf | IGt | IGda | IGdb | |
TMS320F240 MCS-8751 |
XINT2 INT1 |
I/OPB4 P1.2 |
XINT2 INT1 |
GAP2 T1 |
IOPB7 P1.4 |
IOPB5 P1.5 |
IOPB4 P1.6 |
2 系统软件
2.1 点火提前角
点火提前角对发动机的工作性能影响较大,ECU按下式计算点火提前角:
实际点火提前角=初始点火提前角+基本点火提前角+修正点提前角
基本点火提前角数据以表格的形式存储在DSP的FLASH E2PROM中。实际上,基本点火提前角数据远不止256个。如果发动机转速与负荷不在基本点火提前角对应的点上,则采用多元线性回归法进行拟合:
将离线生成的线性回归方程系数存储在ECU中。ECU根据转速和负荷信息,查阅基本点火提前角数据表,或查阅线性回归方程系数表计算基本点火提前角,并根据影响点火提前角其它因素(冷却水温信号、空调开关信号、怠速开关信号等)进行必要的修正后输出点火控制信号IGt。
不同型号的发动机,其点火提前角与线性回归方程式系数不同。系统ECU与PC机的通信功能提供了随时新这些数据的方便。
2.2 系统软件模块
软件系统由主程序模块、控制算法模块、发动机转速测量及处理模块、A/D转换模块、G1和G2信号中断模块、DSP数字控制器与微机的通讯模块、DSP数字控制器在线程序更新模块、系统监测模块、备用点火模块、FLASH EEROM擦除模块等组成。
主程序模块主要包括初始化程序、起动程序、发动机工况测量程序、处理程序、判别程序等。程序的初始化包括RAM区、各特殊功能寄存器、I/O、堆栈等的初始化。主程序模块根据发动机转速、负荷等信号确定发动机的运行工况,并由此转入相应的处理程序当中。
发动机转速测量及处理模块主要完成发动机工况判定、查点火提前角数据表等;A/D转换模块处理冷却水湿和负荷传感器等模拟信号的转换;控制算法模块根据存储的不同燃油标号的点火提前数据、多元线性回归系统等表格,确定基本点火提前数据以及发动机爆震控制等;G1和G2信号中断子程序主要控制IGt、IGda、IGdb信号的产生,检测点火确认信号IGf;DSP数字控制器与微机的通讯模块完成DSP数字控制器与单片机的信息交换;系统检测、备用模块主要完成对一些传感器的检测、ECU单元的监控、备用状态下的点火控制;系统监测和备用点火模块对G1、G2、Ne、IGf、负荷、水温等信号进行监控,当出现故障时,置标志位、报警。当主CPU出现故障时,除了报警之外,该模块立即接过点火控制权。
系统的操作流程图如图2所示。
本点火系统的新颖之处在于ECU使用了两个CPU,使其具有了自检功能和备用功能。主CPU采用了被视为未来通用芯片的DSP,这类芯片具有处理速度快、运算功能强、输入输出速度快、高、可靠性好等特点,适用于实时控制系统。该系统已在汽车发动机上试运行,得到了良好的发动机点火性能。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。