20世纪90年代以来,数字信号处理器(DSP)在自动控制中得到越来越广泛的应用。这主要是因为它具有以下优点:(1)并行体系结构和专用的硬件乘法器使得DSP运算能力极强;(2)高速特性使得DSP能实现实时处理和实时控制。
据调查,目前将DSP应用于机器人控制系统的方案,通常是将机器人位置控制中运动学计算任务交给PC机完成,PC机将计算结果(机器人各关节的转角)到以DSP芯片为的电机控制器,实现机器人控制[2]。本文提出将机器人运动学计算任务直接交给DSP的控制方案,利用DSP的并行性计算特点,提高了计算速度,缩小了控制系统的体积。仿真结果表明,该方案计算和实时性都较好。
机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。
机器人能力的评价标准包括:智能,指感觉和感知,包括记忆、运算、比较、鉴别、判断、决策、学习和逻辑推理等;机能,指变通性、通用性或空间占有性等;物理能,指力、速度、连续运行能力、可靠性、联用性、寿命等。因此,可以说机器人是具有生物功能的实际空间运行工具。
1 TMS320F206 DSP结构特点
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。
TMS320F206DSP基本结构特点包括:①哈佛结构;②流水线操作;③专用的硬件乘法器;④特殊的DSP指令;⑤快速的指令周期(25ns);⑥芯片内部集成了4.5KRAM和32K FLASH RAM,大多数程序及数据可存放在DSP芯片内。这些特点使得该芯片可以实现快速的DSP计算,并能使大部分运算能够在一个指令周期内完成。TMS320F206的并行性表现在以下两方面:
(1)哈佛结构是不同于传统的冯诺曼结构的并行体系结构,其主要特点是将程序和数据存储在不同的存储空间,因此取指令和执行能完全重叠运行。
(2)DSP芯片广泛采用流水线以减少指令执行时间。指令流水线由一系列总线操作组成。TMS320F206流水线具有4个独立的操作阶段:取指令、译码、取操作数和执行,如图1所示。由于4个操作阶段是独立的,因此,这些操作可交叠地进行。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。