ROHM开发出使用纳法级超小电容也能稳定运行的 内置新电路的车载LDO稳压器“BD9xxN1系列”

时间:2022-08-04

全球知名半导体制造商ROHM(总部位于日本京都市)面向汽车动力总成系统、车身和汽车信息娱乐系统等广泛的车载应用的一次(直接连接12V电池)电源,开发出车载LDO稳压器*1 IC“BD9xxN1系列(BD950N1G-C、BD933N1G-C、BD900N1G-C、BD950N1WG-C、BD933N1WG-C、BD900N1WG-C)”。

近年来,随着各种设备的电子化进程加速,电子元器件的安装数量也与日俱增,为了减少元器件的尺寸和数量,对于减少常被用来提高电路稳定性的电容器数量的要求增加。 因此,电源电路越来越需要即使电容器容量很小也能稳定工作的电源IC,但是,1μF以下的输出电容量很难确保应用产品所要求的稳定性。
为了解决这些课题,ROHM于2020年确立了用于电源IC的超稳定控制技术“Nano Cap”。此次的新产品通过搭载Nano Cap技术,实现了在输出电容器容量非常小的条件下也能稳定工作的LDO稳压器。
新产品是搭载了ROHM自有的超稳定控制技术“Nano Cap”的新型车载LDO稳压器系列,支持低至100nF(纳法:10的负九次方)的输出电容量,不到普通产品1/10,而且,在输入电压和负载电流*2波动的情况下,也能实现应用产品所要求的稳定工作(输出电压波动100mV以内:负载电流波动1mA?50mA/1?秒时)。新产品支持超宽范围的输出电容量,不仅适用于普通的数μF的小型MLCC(多层陶瓷电容器)和大容量的电解电容器,也适用于以往实际应用中很难稳定工作的1μF以下的0603尺寸超小型MLCC,因此,不仅有助于元器件和电路板的小型化,还可以在更广泛的电容器条件下使用,有助于减少设计工时。
新产品已于2022年4月开始出售样品(样品价格200日元/个,不含税),计划于2022年8月起暂以月产20万个的规模投入量产。另外,新产品已经开始通过电商进行销售,通过Ameya360、Sekorm和Oneyac等电商平台均可购买。

关于搭载Nano Cap技术的本系列产品的阵容,ROHM计划到2022年底扩充到22种产品,到2023年底扩充到46种产品,旨在为解决应用中的更多问题做出贡献。

<关于Nano Cap>
Nano Cap是在ROHM的垂直统合型生产体制下,凝聚“电路设计”、“布局”、“工艺”三大先进模拟技术优势而实现的超稳定控制技术。稳定控制技术解决了模拟电路中电容器相关的稳定运行课题,无论是在汽车和工业设备领域,还是在消费电子设备领域,这项技术都有助于减少各种应用的设计工时。

<新产品详情>

“BD9xxN1系列”是车载一次LDO系列新产品,满足车载产品125℃以上工作和汽车电子产品可靠性标准“AEC-Q100”的要求,也满足一次电源输入电压40V以上等基本要求。利用新搭载的超稳定控制技术“Nano Cap?”,新产品能够支持不到普通产品1/10的100nF输出电容量,而且,即使在输入电压和负载电流波动时,也能实现应用产品要求的稳定性(输出电压波动在100mV以内:负载电流波动1mA?50mA/1?秒时)。围绕支持输出电容范围和响应性能,提供各项性能均衡的业界高性能产品。

ROHM计划通过扩展输出电压和封装形式,到2022年底将本系列的产品阵容扩充至22款产品,到2023年底再增加24款产品并推出支持500mA输出电流的产品,产品阵容中共计46款产品,旨在持续为解决应用中的更多问题做出贡献。

<应用示例>
◇燃油喷射系统(FI)和胎压监测系统(TPMS)等动力总成系统
◇车身控制模块(BCM)等车身系统
◇仪表盘、平视显示器(HUD)等信息娱乐系统
除了车载一次电源应用之外,还适用于其他更广泛的应用领域。
<支持工具>

ROHM提供高精度SPICE模型“ROHM Real Model”,在新产品验证用的仿真模型中,利用ROHM自有的建模技术,忠实地再现了实际IC的电气特性和温度特性,可使仿真值与IC实物的值完全一致。通过可靠的验证,可有效防止实际试制后的返工等情况发生,有助于提高应用产品的开发效率。

这种SPICE模型可通过以下的ROHM官网链接查看:
<电商销售信息>
起售时间: 2022年6月开始
电商平台:Ameya360,Sekorm,Oneyac
在其他电商平台也将逐步发售。

在售产品编号:BD950N1G-C、BD933N1WG-C、BD900N1G-C

<术语解说>

*1) LDO稳压器(Low Drop Out Regulator / 低饱和稳压器)
电源IC的一种,将直流(DC)电压转换为直流电压。输入和输出的电压差较低,属于“线性稳压器”(输入输出电压呈线性动作)。与DC/DC转换器IC(开关稳压器)相比,具有电路结构简单、噪声低等特点。
*2) 负载电流、负载响应特性
从电源IC的角度来看,微控制器、传感器等后级的电子电路都可以看作是“负载”。当这些负载工作时,会流过电流(负载电流),从而导致电源IC的输出电压波动(下降)。负载响应特性是指使负载电流导致波动的电压复原所需的响应时间和电源的稳定性。
?9?9“Nano Cap?”是ROHM Co.,Ltd.的商标或注册商标。

上一篇:Bluetooth - 新一代蓝牙音频LE Audio,助力瑞昱半导体带来音频新体验
下一篇:Bourns 扩展POWrFuse™ 电力保险丝产品线 推出全新电信系列

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。