等式(1)
其中R节点是该节点呈现的等效电阻,C节点是其对地的杂散电容。图 1. CFA 的电路原理图(上)及其组成块(下)。
这里,除了增益节点之外的每个节点使得R节点<< Rgn,其中Rgn是增益节点呈现的等效电阻。因此,开环跨阻增益z( jf )由增益节点极点f p = 1/(2πR gn C gn )主导,所有剩余极点通常聚集在该主导极点之上至少约 3-4 个十进制。极。
(一) (二)
图 2. (a) 电压跟随器 CFA,(b) 其 1/β 曲线。使用电线代替 R F会使电路不稳定并导致振荡。
(一) (二)
图 3. (a) 米勒积分器和 (b) 其 1/β 曲线。
在低频下,| ZF | _ >> r n,我们有 | 1/β | → 1/(2πfC),并且在高频下,其中 | ZF | _ << r n,我们有 | 1/β | → r n。如图 3 (b)所示,交叉频率再次处于相移过多的区域,此时没有留下相位裕度,电路可能会振荡。
等式(2)
给出传递函数,
如何抵消 CFA 中的相位滞后
在某些情况下,允许使用(小)反馈电容,此时需要抵消因反相输入处存在大量杂散电容而产生的相位滞后。 一个典型的例子是电流输出数模转换器 (DAC) 的 IV 转换,它表现为一个具有数十甚至数百皮法量级的并联杂散电容C s的电流吸收器I i,如图所示在图5 (a)中。
(一) (二)
图 5. (a) IV 转换器,(b) 通过线性化波特图研究其稳定性:下标 u 代表未补偿 (C F = 0),下标 c 代表补偿(C F到位)。
等式(4)
其中r n << R F的事实已被利用。等式(5)
求解C F 给出 等式(6)
如果需要比估计的45°更大的相位裕度,可以通过适当增加C F的值来实现。这项任务凭经验完成,方法是用示波器观察阶跃响应并提高C F直到过冲降低到可接受的值。
复合放大器:CFA 和 VFA 的选择
图 6.兼具 VFA 和 CFA 优点的复合放大器。
该电路使用恒定增益带宽积 (GBP) 为 10 MHz 的 VFA,以实现 100 V/V 的闭环增益和 10 MHz 的闭环带宽。如果单独工作,VFA 的带宽仅为 (10 MHz)/100 = 100 kHz。然而,将其与增益为 100 的速度更快的 CFA 级联将使 VFA 仅放大 1 V/V,即仅充当电压跟随器,我们知道其闭环带宽与其 GBP 一致,依次与ft重合。
图5 . 图 6 复合放大器的波特图。将 VFA 与具有闭环增益的 CFA 级联 CFA 为40 dB 时, VFA的开环增益 a VFA也向上移动 40 dB,从而产生复合开环增益a comp,并且在复合闭环增益 A comp中。请注意 VFA 如何被诱骗充当闭环增益 A VFA为 0 dB 的单位增益电压跟随器。
为了避免在反馈环路中引入任何实质性延迟而破坏 VFA 的稳定性,CFA 的闭环带宽应比 VFA 的 GBP 高得多(例如,十倍或更多),这是一个很容易实现的目标更快的 CFA。免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。