光隔离器通过 LED 和探测器之间的宽距离直通绝缘 (DTI) 提供增强绝缘,具有三层绝缘屏障。三层绝缘层分别是硅树脂、聚酰亚胺薄膜和硅树脂,如图 1 所示。聚酰亚胺薄膜是专门为抵抗局部放电的破坏性影响而开发的,局部放电会导致绝缘材料的电离和击穿。聚酰亚胺具有高介电强度和宽温度范围的独特特性,使其广泛应用于从机车到航空航天的电气绝缘应用。ACPL-334J 栅极驱动光耦合器中使用的聚酰亚胺薄膜的典型介电强度为 300 kV/mm,可承受低至 -200C 和高至 400C 的温度。ACPL-334J 的 DTI 为 0.5 mm。
图 1. 具有三层绝缘屏障的光隔离器结构。图片由 Bodo's Power Systems提供IEC 将 SELV(隔离超低压)电路定义为在正常和单一故障条件下电压不能超过 ELV(超低压)的电路。SELV 电路必须与所有其他电路具有电气保护隔离。在电机驱动器中,输入端的电源电路应与 PWM(脉冲宽度调制)控制电路隔离。ACPL-334J 输入端的引线框架设计有 0.8 毫米以上的保护隔离距离,如图 2 所示。
图 2. ACPL-334J 的引线框架结构带有保护隔离。图片由Bodo's Power Systems 提供电容隔离器使用二氧化硅 (SiO 2 ) 作为片上绝缘的电介质。隔离电路采用单片工艺集成在同一芯片上,并与其他电路集成。高压隔离是使用两个串联的厚 SiO 2电容器实现的,一个位于输入侧,一个位于输出侧。高压电容器使用与 CMOS 生产相同的工艺。电容隔离器的 SiO 2或 DTI的厚度在 0.014 至 0.028 毫米之间。
图 3.带有两个串联 SiO2 电容器的电容隔离器结构。图片由Bodo's Power Systems 提供图 4 显示了双芯片模块中使用电容隔离的栅极驱动器的 X 射线。输入和输出 IC 具有隔离电容器,以提高高压能力。由于这是一个单片工艺,栅极驱动器的输入 IC 由单个芯片中的电源电路、PWM 控制电路和 SiO 2电容器组成。
图 4.双芯片模块中使用电容隔离的栅极驱动器的 X 射线图像由 Bodo's Power Systems提供 [PDF]然而,在电容隔离的单芯片架构中,电源故障会导致输入逻辑 (IN+/IN-) 处于错误状态,从而发出错误的电机运动信号。另一方面,ACPL-334J 输入端的引线框架提供了与故障电源的保护隔离。这种架构冗余提供了一种故障安全条件,其中 PWM LED 不会向电机传输错误信号。
图 5. 保护隔离可在电源故障期间提供故障安全条件。图片由 Bodo's Power Systems提供电容隔离栅极驱动器 DUT电压输入>15V,电流输入>13mA>99.9μA(FAIL测试仪极限)将高压漏电流施加到被测设备 (DUT) 附带的控制单元,以查看绝缘屏障是否退化。采用光学绝缘的 ACPL-334J 栅极驱动器在破坏性电源测试后漏电流没有变化。这归功于具有宽 DTI 的坚固绝缘结构以及由硅树脂、聚酰亚胺薄膜和硅树脂组成的三层绝缘层,如 ACPL-334J 的横截面 X 射线所示。虽然很明显电源损坏了 PWM LED 和输入 IC,但由于距离较远,聚酰亚胺薄膜或绝缘胶带仍未受损。
图 6. 电源破坏性测试后 ACPL-334J 的故障分析。图片由 Bodo's Power Systems提供 [PDF]但是,采用电容绝缘的栅极驱动器漏电流非常大,超出了高压测试仪的极限。进行了故障分析,以了解造成高漏电流的损坏程度。
图 7. 电源破坏性试验后电容式隔离栅极驱动器的故障分析。图片由 Bodo's Power Systems提供 [PDF]免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。