高压变电站示意图。提供为了更好地理解变电站功率变换的内部工作原理,通过考虑变压器匝数比 (N),使用电压变换方程来评估功率。电压变换方程比较变压器初级和次级绕组中的电压与匝数之比,并通过以下公式确定:V1V2=N1N2
其中 N 是初级绕组 (N 1 ) 和次级绕组 (N 2 ) 之间的匝数比。
计算示例: 考虑一个升压变压器,它将变电站的电压从 11 kV(初级)增加到 220 kV(次级)。次级绕组的匝数比可以轻松评估,如下所示。N=V1V2=220,00011,000=20
因此,次级绕组的匝数比是初级绕组的20倍。
为了更好地可视化次级电压 (V 2 ) 和匝数比 (N)之间的关系,请考虑下面的变压器电压变换图,其中初级电压为 11 k V,次级电压随着匝数比的增加而稳定上升。
图2 . 该图显示了升压变压器中 11,000 V 的变压电压以及输出电压与匝数比的关系。图片由 Bob Odhiambo 提供电力变压器并非都完全高效,因为与磁滞和涡流相关的铜芯和铁芯会产生功率损耗。变压器铜绕组中的电阻会造成铜损,因为部分能量会转化为热量,这种损耗可以通过数学方法进行评估,如下式所示: P铜=I2p\乘以Rp+I2s\乘以Rs
对于磁滞和涡流引起的损耗,铁损方程可使用以下公式进行计算:
P铁=Vp×I负载
变电站整流变压器
为了限度地减少电力传输损耗,变电站配备了整流变压器,可将高压交流电 (AC) 转换为高压直流电 (HVDC)。设计HVDC 系统时,需要考虑整流变压器技术、额定功率和电压等级。整流技术使用线换向转换器 (LCC) 和电压源转换器 (VSC) 等转换器,它们在 HVDC 系统中的电力整流中发挥着独特的作用。在 LCC 的基本配置中,高压交流电到直流电的转换是使用晶闸管桥中配置的晶闸管完成的。晶闸管的换相是通过交流电的自然过零来实现的,这使得其控制灵活性较差。该转换器适用于互连异步交流系统并处理长距离电力传输。为了确定转换器的终直流输出电压,我们可以使用以下公式对其进行数学评估,其中 (V AC ) 表示交流线路中的电压。 VDC=√3×VAC
LCC 功率转换器中的其他重要参数是转换器电流 (I conv ) 和终的整流器功率 (P rect )。这些参数可以使用以下公式确定,其中交流线路中的电流由 (I AC )确定。
Iconv=2π×IAC
Prect=√3×IAC×VAC
图3 . LCC 波形图显示具有不同换向点的正弦电压和电流。图片由 Bob Odhiambo 提供与 LCC 不同,VSC 可以通过使用绝缘栅双极晶体管 (IGBT) 来控制直流的方向和幅度,从而通过将可再生能源整合到电网中,为有功功率和无功功率的控制增加更大的灵活性。在 VSC 中,交流线路电压等于直流电压。交流线路电流也等于转换器电流,如下所示:VDC=VAC
Iconv=VAC
VCS 中的转换器功率使用以下公式进行评估:Pconv=√3×VAC×IAC
图 4.VSC 波形图显示了更平滑的电压和电流波形,展示了其受控和连续运行。图片由 Bob Odhiambo 提供移相变压器
为了稳定可靠的电网,变电站可以使用移相变压器(PST)通过控制潮流的相位角来管理电力传输。PST 还可以调节变电站的电压,进一步改善电压分布。PST 通常用于连接异步电网系统和高压直流输电系统,并控制交流和直流系统之间的功率流。Vout,new=N转数,newN转数,原始×Vout,原始
通过考虑发送端和接收端电压、它们的相角差 ( ) 以及传输线的电抗 (X) 来计算潮流。因此,功率流的计算公式如下:
P调整=V发送×V接收×sinsin(θ+Δθ)X
其中相位角差用 (Δ) 表示。
仪器变压器免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。