您可能有一整盒E12 系列
电阻器,如图 1 所示,但仍然无法获得足够接近您所需
电阻的值。如果您需要 50 kΩ 电阻,接近的电阻是 47 kΩ。当然,这个误差在 10% 以内,但这对于您的应用程序来说可能还不够好。你会怎样做?
E12 系列电阻器及其颜色代码
![](https://file3.dzsc.com/news/24/01/08/165731511.webp)
图 1. E12 系列电阻器及其颜色代码。图片由EEPower提供
本文将介绍一个简单的分步过程,使用串联或并联的多个电阻来
微调电阻值。我们甚至会提供方程式和一些示例,让您轻松上手。
快速公差讨论
要记住的一条规则是,具有特定容差的电阻器的任何组合也具有相同的容差。因此,如果您使用容差为 ±10% 的 E12 系列电阻器,则终的电阻器组合也将具有 ±10% 的容差。
在下面的所有计算中,请记住,您的终结果将始终受到您选择的电阻器容差的限制。当然,您始终可以使用欧姆表测量电阻器,以改进下面的计算和结果。
选择串联还是并联电阻?
该过程的步是选择串联还是并联使用电阻。选择过程就像回答一个简单的问题一样简单:
问题:接近的标准值电阻是否大于所需电阻?
否:建立串联电阻网络。
是:建立一个并联电阻网络。
![](https://file3.dzsc.com/news/24/01/08/165806309.webp)
图 2 以决策树的形式展示了这一过程。
串联或并联电阻的选择过程
图2 . 串联或并联电阻的选择过程
求解串联电阻值
这方面的数学计算非常简单,因为总串联电阻只是电阻之和:
RS=R1+R2
等式 1。
等式 1。
假设我们所需的电阻为 50 kΩ。接近的 E12 电阻器为 47 kΩ。我们可以使用简单的减法求解R 2:
R2=RS?R1=50000?47000=3000 Ω
等式2。
我们这里有两个 E12 电阻可供选择:2700 Ω 或 3300 Ω。它们提供的结果与我们的目标电阻仅相差 300 Ω,误差仅为 -0.6%(当然,E12 电阻器的容差为 ±10%)。
如果我们想更接近,我们可以选择低于期望值的 E12 值,然后重复该过程来计算第三个串联电阻:
$$R_3 = R_S - R_1 - R_2 = 50000 - 47000 - 2700 = 300 \text{ } \Omega$$R 3 = R S - R 1 - R 2 = 50000 - 47000 - 2700 = 300 Ω
等式 3。
接近的
标准电阻值为 270 Ω。这给我们提供了终的串联电阻:
R S = 47000 + 2700 + 270 = 49970 Ω
等式 4。
仅当您使用欧姆表测量电阻并且可以消除 ±10% 的变化时,重复该过程 3 次可能才有意义。
求解并联电阻值
假设我们的目标是 5200 Ω。使用 E12 电阻器,我们能得到的接近值是 5600 Ω。由于这大于我们的目标电阻,因此我们将使用一组并联电阻。
现在,这是一个在大多数教科书中都找不到的技巧。他们给出了并联电阻R 1和R 2的总电阻公式:
R P = R 1 × R 2 R 1 + R 2
等式 5。
由于我们知道R P和R 1,我们可以求解R 2:
2= R 1 × R P R 1 ? R P等 式 6。 请注意公式 6 中的减号。
使用两个并联电阻
应用公式 6,我们可以求解第二个电阻:
R 2 = 5600 × 5200 5600 ? 5200= 72800 Ω = 72.8 k Ω
等式 7。
使用 E12 电阻器可以得到的接近 72.8 kΩ 的电阻是 68.0 kΩ。将此实际电阻值代入公式 5,我们可以找到实际并联电阻值。
RP = 5600 × 68000 5600 + 68000 _= 5174 Ω
方程 8.
这个结果仅比我们的目标小 -0.50%,这在大多数情况下已经足够好了。但不要忘记,由于电阻器的容差,我们仍然会在该值周围存在 ±10% 的变化。
使用三个并联电阻
如果我们想要更接近 5200 Ω 的目标,我们可以为R 2选择下一个更大的 E12 系列电阻器;在这种情况下,为 82.0 kΩ。
RPRP = 5600 × 82000 5600 + 82000 _= 5242 Ω
Ω 方程 9.
然后,我们使用公式 2 中的R 1值重复并联
电阻计算:
R 3 = 5242 × 5200 5242 ? 5200= 649010 Ω = 649 k Ω
方程 10。
接近的 E12 电阻器是 680 kΩ,因此我们将使用它。现在,我们的总并联电阻是:
R P = 1 1 R 1+ 1 R 2+ 1 R 3= 1 1 5600+ 1 82000+ 1 680000= 5202 Ω
公式 11。
我们的误差已降低至 0.04%(当然是 ±10%)。
关于电阻器选择的另一个有用提示
在我们离开之前,这里有一个更有用的提示。为了从两个电阻器中得出的值(在零件的公差范围内),选择非常不同的值,正如我们使用此过程所做的那样。