在上面的可变磁阻步进电机的简单示例中,电机由一个中心转子组成,该转子被四个标记为A、B、C和D的电磁场线圈包围。所有具有相同字母的线圈都连接在一起,因此通电(例如标记为A 的线圈)将导致磁转子与该组线圈对齐。
通过依次向每组线圈通电,可以使转子旋转或从一个位置“步进”到下一个位置,其角度由其步距角结构确定,并且通过按顺序对线圈通电,转子将产生旋转运动。
步进电机
驱动器通过按设定顺序对励磁线圈通电来控制电机的步距角和速度,例如“ ADCB,ADCB,ADCB,A… ”等,转子将沿一个方向(正向)旋转,并通过将脉冲序列反转为“ ABCD、ABCD、ABCD、A… ”等,转子将沿相反方向(反向)旋转。
因此,在上面的简单示例中,步进电机有四个线圈,使其成为 4 相电机,定子上的极数为 8 (2 x 4),间隔为 45 度。转子上的齿数为六个,齿距为 60 度。
然后,转子有 24 个(6 个齿 x 4 个线圈)可能的位置或“步数”来完成一整圈。因此,上面的步距角为: 360 o /24 = 15 o。
显然,更多的转子齿和/或定子线圈将导致更多的控制和更精细的步距角。此外,通过以不同的配置连接电机的电气线圈,可以实现全步角、半步角和微步角。然而,为了实现微步进,步进电机必须由(准)正弦电流驱动,其实施成本昂贵。
还可以通过改变施加到线圈的数字脉冲之间的时间延迟(频率)来控制步进电机的旋转速度,延迟越长,一整转的速度越慢。通过向电机施加固定数量的脉冲,电机轴将旋转给定角度。
使用延时脉冲的优点是不需要任何形式的附加反馈,因为通过计算提供给电机的脉冲数量,就可以准确地知道转子的终位置。这种对设定数量的数字输入脉冲的响应允许步进电机在“开环系统”中运行,使其控制起来既容易又便宜。
例如,假设上面的步进电机的步距角为每步 3.6 度。要将电机旋转 216 度的角度,然后再次停止在所需位置,总共只需要:216 度/(3.6 度/步)= 80 个施加到定子线圈的脉冲。
有许多步进电机控制器 IC 可供选择,可以控制步进速度、旋转速度和电机方向。SAA1027 就是这样一种控制器 IC,它内置了所有必需的
计数器和代码转换,并且可以按正确的顺序自动将 4 个完全控制的桥输出驱动到电机。
旋转方向也可以选择单步模式或沿选定方向连续(无级)旋转,但这会给控制器带来一些负担。当使用 8 位数字控制器时,每步也可以有 256 微步
SAA1027步进电机控制芯片
在本关于旋转执行器的教程中,我们研究了有刷和无刷直流电机、直流伺服电机和步进电机作为机电执行器,可用作位置或速度控制的输出设备。
在下一篇关于输入/输出设备的教程中,我们将继续研究称为执行器的输出设备,特别是使用电磁力将电信号再次转换为声波的输出设备。我们将在下一个教程中看到的输出设备类型是
扬声器。