在继续之前,请确保您熟悉 MOS 晶体管的基本概念 ,这将为您准备以下信息。
MOS 晶体管中的漏极/源极和衬底结在晶体管工作期间被反向偏置。这会导致器件中出现反向偏置漏电流。该泄漏电流可能是由于反向偏置区域中少数载流子的漂移/扩散以及由于雪崩效应而产生的电子空穴对。pn 结反向偏置漏电流取决于掺杂浓度和结面积。
对于漏极/源极和衬底区域的重掺杂 pn 结,带间隧穿 (BTBT) 效应主导反向偏置漏电流。在带间隧穿中,电子直接从 p 区的价带隧穿到 n 区的导带。对于大于 10 6 V/cm 的电场,BTBT 是可见的。
请注意,在本文的上下文中,我们将隧道现象定义为即使电子能量远小于势垒时也会发生。
当栅极电压小于阈值电压 (V th ) 但大于零时,晶体管被称为偏置在亚阈值或弱反型区。在弱反转中,少数载流子的浓度很小但不为零。在这种情况下,对于 |V DS |的典型值 > 0.1V 并且整个电压降发生在漏极-衬底 pn 结上。
漏源之间平行于Si-SiO 2界面的电场分量很小。由于这个可忽略的电场,漂移电流可以忽略不计,亚阈值电流主要由扩散电流组成。
亚阈值漏电流主要是由于漏极引起的势垒降低或 DIBL。在短沟道器件中,漏极和源极的耗尽区相互作用,降低了源极的势垒。然后源能够将电荷载流子注入沟道表面,导致亚阈值泄漏电流。
DIBL 在高漏极电压和短沟道器件中很明显。
MOS 器件的阈值电压由于沟道长度的减少而降低。这种现象称为 Vth滚 降(或阈值电压滚降)。在短沟道器件中,漏极和源极耗尽区进一步进入沟道长度,耗尽部分沟道。
因此,需要较小的栅极电压来反转沟道,从而降低阈值电压。这种现象对于更高的漏极电压是明显的。阈值电压的降低增加了亚阈值泄漏电流,因为亚阈值电流与阈值电压成反比。
温度对漏电流也有影响。阈值电压随温度升高而降低。或者,换句话说,亚阈值电流随着温度的升高而增加。
在短沟道器件中,薄栅极氧化物会在 SiO 2层上产生高电场。具有高电场的低氧化物厚度导致电子从衬底隧穿到栅极以及从栅极通过栅极氧化物隧穿到衬底,从而导致栅极氧化物隧穿电流。
考虑如图所示的能带图。
张图,图 2(a),是一个平带 MOS 晶体管,即其中不存在电荷。
当栅极端子正偏置时,能带图会发生变化,如第二张图所示,图 2(b)。强烈反转表面处的电子隧道进入或穿过 SiO 2层,从而产生栅极电流。
另一方面,当施加负栅极电压时,来自 n+ 多晶硅栅极的电子隧道进入或穿过 SiO 2层,从而产生栅极电流,如图 2(c) 所示。
栅极和衬底之间主要有两种隧道机制。他们是:
您可以在上面的图 3(a) 和 3(b) 中看到两种隧道机制的能带图。
在短沟道器件中,衬底-氧化物界面附近的高电场激发电子或空穴,它们穿过衬底-氧化物界面进入氧化物层。这种现象被称为热载流子注入。
这种现象更可能影响电子而不是空穴。这是因为与空穴相比,电子具有更小的有效质量和更小的势垒高度。
考虑具有 p 型衬底的 NMOS 晶体管。当栅极端子处存在负电压时,正电荷会积聚在氧化物-衬底界面处。由于衬底上累积的空穴,表面表现为比衬底掺杂更重的 p 区。
这导致沿漏极-衬底界面的表面耗尽区较薄(与主体中耗尽区的厚度相比)。
由于薄的耗尽区和较高的电场,会发生雪崩效应和带间隧穿(如本文部分所述)。因此,栅极下方漏区中的少数载流子被产生并被负栅极电压推入衬底。这增加了漏电流。
在短沟道器件中,由于漏极端子和源极端子的接近,两个端子的耗尽区会聚集在一起并终合并。在这种情况下,据说发生了“击穿”。
穿通效应降低了来自源头的大多数载流子的势垒。这增加了进入衬底的载流子的数量。这些载流子中的一些被漏极收集,其余载流子导致漏电流。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。