线圈的电感是指电感线圈必须抵抗流过它的电流的任何变化的电气特性。因此,只有当电流发生变化时,电感才会出现在电路中。
由于磁场的变化,电感器会在其内部产生自感应电动势。在电路中,当在电流变化的同一电路中感应电动势时,这种效应称为自感应(L),但有时通常称为反电动势,因为它的极性与施加电压。
当电动势被感应到位于同一磁场内的相邻组件时,电动势被称为互感感应,(M),互感是变压器、电动机、继电器等的基本工作原理。自感是互感的一种特殊情况,因为它是在单个隔离电路中产生的,所以我们通常将自感简称为电感。
电感的基本测量单位称为亨利( H ),以约瑟夫·亨利命名,但它也有韦伯每安培单位 ( 1 H = 1 Wb/A )。
楞次定律告诉我们,感应电动势会产生一个方向的电流,该方向与首先引起电动势的通量变化相反,即作用和反作用的原理。然后我们可以准确地将电感定义为:“当线圈中感应出一伏特的电动势时,如果流过所述线圈的电流以一安培/秒的速率变化,则线圈的电感值为一个亨利”。
换句话说,当流过线圈的电流以一安培/秒 ( A/s ) 的速率变化时,线圈具有一个亨利 ( 1H ) 的电感 ( L ) 。这种变化会在其中感应出一伏特的电压 ( V L )。因此,每单位时间通过绕组线圈的电流变化率的数学表示如下:
空心线圈的磁感应
然后将上述个等式中的这些表达式代入电感,我们将得到:
测量空心线圈
通过取消和组合相似的项,空心线圈(螺线管)的自感系数的终方程为:
系数
在哪里:
L在亨利
μ ο是自由空间的磁导率 (4.π.10 -7 )
N是圈数
A是以 m 2为单位的内核区域 (πr 2 )
?是以米为单位的线圈长度
由于线圈的电感是由其周围的磁通量引起的,对于给定电流值,磁通量越强,电感就越大。因此,多匝线圈的电感值将高于仅几匝线圈的电感值,因此,上面的等式将给出电感L与匝数的平方N 2成正比。
EEWeb 有一个的在线线圈电感计算器,用于计算不同导线尺寸和位置配置的线圈电感。
除了增加线圈匝数外,我们还可以通过增加线圈直径或延长磁芯来增加电感。在这两种情况下,都需要更多的电线来构造线圈,因此,存在更多的力线来产生所需的反电动势。
如果线圈缠绕在由软铁材料制成的铁磁芯上,则线圈的电感比缠绕在非铁磁或空心空气芯上的电感还可以进一步增加。
铁氧体磁芯
如果内芯由一些铁磁材料制成,如软铁、钴或镍,线圈的电感会大大增加,因为对于相同的电流量,产生的磁通量会更强。这是因为材料通过较软的铁磁芯材料更强烈地集中了力线,正如我们在电磁体教程中看到的那样。
因此,例如,如果磁芯材料的相对磁导率比自由空间大 1000 倍,如软铁或钢, 1000μο,则线圈的电感会大 1000 倍,因此我们可以说线圈的电感增加随着岩心的磁导率增加成比例。
然后对于缠绕在线圈架或铁芯上的线圈,需要修改上述电感方程以包括新线圈架材料的相对磁导率μ r 。
如果线圈缠绕在铁磁芯上,则会产生更大的电感,因为磁芯的磁导率会随磁通密度而变化。然而,根据铁磁材料的类型,内核磁通量可能会很快达到饱和,从而产生非线性电感值。由于线圈周围的磁通密度取决于流过它的电流,电感L也成为该电流i的函数。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。