种种迹象表明,自动驾驶汽车的革命性发展即将全面来临。汽车公司正在与Google和Uber等科技巨头以及创业公司合作开发新一代自动驾驶汽车,这些汽车技术将改变我们的城市道路和高速公路,为未来的智慧城市奠定基础。他们将利用机器学习、物联网 (IoT) 和云技术等加速这一发展。
更重要的是,自动驾驶汽车将继续推动已经由Uber和Lyft等共享出行服务商发起的行业变革。各类技术汇集在一起,将创造一个由智能无人驾驶车辆组成未来交通的世界。
终,所有自动驾驶汽车都将通过集成传感器、摄像头、雷达、高性能GPS、光探测和测距(激光雷达)、人工智能(AI)和机器学习,以实现一定程度的自治。而其与安全和可扩展的物联网、数据管理和云解决方案的连接也很重要,因为它们为收集、管理和分析传感器数据提供了具有弹性和高性能的基础。
从环境效益到安全性的提升,车联网的兴起都具有深远的社会影响。路上汽车的减少也意味着减少了温室气体排放,从而降低了能耗并改善了空气质量。
对于自动驾驶汽车和智能道路系统而言,端点遥测、智能软件和云技术都是不可或缺的。自动驾驶汽车中的车载摄像头和各类传感器收集大量数据,同时这些数据必须得到实时的处理以使车辆行驶在正确的车道上,并安全地驶向目的地。
基于云技术的网络和连接也是这一系统的重要组成部分。自动驾驶汽车将配备支持车辆间通信的车载系统,允许它们从道路上的其他车辆中学习,以便根据天气变化以及路况变化(诸如弯路和路上杂物等)进行调整。先进的算法和深度学习系统是确保自动驾驶汽车能够快速且自动适应各种场景变化的关键。
除特定组件(例如云计算基础架构的可扩展性和智能数据管理)之外,还需要包括供电电源在内的关键系统的冗余。已经发布的电池冗余解决方案,如LTC3871,可工作在两个具有不同额定电压的电池系统间,例如48 V锂离子电池和12 V铅酸电池。但是大多数现有的解决方案都没能为相同电压的电池提供冗余,例如两个12 V、24 V或48 V电池,至少到目前为止是这样。
显然,一个可以在两个12 V电池之间工作的双向降压-升压DC/DC转换器是需要的。这种DC/DC转换器可用于为其中任何一个电池充电,也可以让两个电池同时为同一个负载供电。此外,如果两个电池中的任何一个发生故障,则需要能够检测到该故障并将其与另一个电池隔离,以便可以继续为负载供电而不会造成中断。ADI公司近发布的LT8708双向DC/DC控制器,可以连接两个具有相同电压的电池,从而解决了这一关键问题。
单通道双向控制IC解决方案
LT8708是一款效率高达98%的双向降压-升压开关电源控制器,可在两个电压相同的电池之间工作,非常适合用于实现自动驾驶汽车的电池冗余。同时它可以在输入电压高于、低于或等于输出电压的的情况下工作,非常适合用于电动和混动汽车中常见的两个12 V、24 V或48 V电池系统。LT8708工作在两个电池系统之间,即便其中一个电池发生故障,也可以防止系统关闭。LT8708还可以用于48 V/12 V和48 V/24 V双电池系统。
LT8708采用单电感,当工作的输入电压范围为2.8 V至80 V,输出电压范围为1.3 V至80 V时,根据所选的外围器件和主电路相数的不同,可提供高达数千瓦的转换功率。它简化了在对VOUT、VIN和/或I OUT、I I N进行正向或反向调节时,电池/电容备份系统的双向功率变换。LT8708具有六种独立的调节模式,可适用于多种不同的应用。
LT8708-1与LT8708并联使用,可以加大转换功率和相数。LT8708-1始终作为主机LT8708的从机工作,可以错相设置时钟,并且能够提供与主机相当的转换功率。一个主机多可同时连接12个从机,从而增加系统的功率和电流变换能力。
转换器输入端和输出端的正向和反向电流可以进行监测和限制,通过四个电阻可以独立设置所有四个限流(正向输入、反向输入、正向输出和反向输出)。与方向设置 (DIR) 引脚相结合,LT8708可配置为处理VIN至VOUT或VOUT至VIN的功率,非常适合于汽车、太阳能、电信和电池供电系统。
LT8708采用5 mm × 8 mm、40引脚QFN封装,有三种温度等级可供选择,包括适用于–40°C至 125°C工作范围的扩展和工业等级以及–40°C至 150°C高温工作范围的汽车等级。图1显示了简化的LT8708框图。
完整的解决方案
图2中的框图显示了在汽车应用中完成双电池冗余电路设计所需的其他部件。如图所示,LT8708与两个LT8708-1一起构成三相解决方案,可在任一方向提供高达60 A的转换电流。通过添加额外的LT8708-1器件,可以实现12相及以上的大功率应用。AD8417是一款双向电流检测放大器,用于检测流入和流出电池的电流。当检测电流超过预设值时,LTC7001高边NMOS静态开关驱动器会打开背靠背MOSFET,将电池与电路隔离。
LTC6810-2监测并控制锂离子电池。它可测量电池单元,并保证总测量误差小于1.8 mV。将多个LTC6810-2并联连接到主处理器可以为监控电路中的其他电压创建额外的冗余。LTC6810-2具有isoSPI?接口,可用于高速、RF抗扰、远距离通信,并支持双向操作。
LTC6810-2还支持通过PWM占空比控制每个单元的被动式平衡和电池的测量冗余。
控制概述
LT8708支持输出电压高于、低于或等于输入电压时的功率变换,具有在输入和输出端进行双向电流的监控和调节功能。ADI享有的控制架构允许在降压、升压或降压-升压工作区域采用电感内阻进行电流检测电阻。电感电流由V C引脚上的电压控制,该电压是六个内部误差放大器E A1至EA6的组合输出。这些放大器可用于限制或调节对应的电压或电流,如表1所示。
表1. 误差放大器(EA1至EA6)
VC电压的-范围典型值为1.2V。VC电压值控制正向电感电流,从而控制从VIN流向V OUT的功率。V C电压值控制反向电感电流,从而控制从VOUT流向VIN的功率。
简单示例V OUT的调节过程,FB OUT引脚接收V OUT电压反馈信号,通过EA4与内部基准电压进行比较。较低的VOUT电压会升高VC,因此有更多电流流入VOUT。相反,较高的VOUT电压会降低VC,从而减少流入VOUT的电流,甚至从VOUT吸收电流和功率。
图1. LT8708简化的双向双12 V电池系统应用原理图。图2. 完整的双电池冗余解决方案系统框图。
如前所述,LT8708具有在输入和输出端提供双向电流调节的功能。V OUT电流可以实现正向和反向(分别为EA6和EA2)调节或限制,VIN电流也可以实现正向和反向(分别为EA5和EA1)调节或限制。
在一些常见应用中,VOUT可能通过EA4进行调节,其余误差放大器则用于监控输入或输出过流或输入欠压的情况。在其他一些应用中(如电池备份系统),连接到V OUT的电池可能会以恒定电流 (EA6) 充电到电压 (EA4),也可能反向,这时通过另一些误差放大器向VIN回馈能量以调节VIN并限制电流。有关此主题的更多信息,请参见LT8708数据手册。
结论
LT8708-1为相同电压双电池的汽车DC/DC系统带来了更别的性能、控制和设计简化。无论是将其用于两个电源之间的能量转移以实现冗余,还是用于关键场合的备用电源,LT8708都可以工作在两个具有相同电压的电池或超级电容之间。这一功能为汽车系统工程师在发展汽车电子技术的进程中铺平道路,使汽车更安全、更高效。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。