由于AD8479将信号衰减了60倍,为实现单位差分增益设备内部的其他运算放大器就必须将该差分信号再放大60倍。该增益通过连接到负基准电压(Ref–)引脚的电阻和连接到输出的电阻的比率实现。由于此处的目标只是实现衰减,因此可通过将输出信号反馈给Ref–引脚来旁路该增益。在此配置中,不再获得单位增益,而是实现精密漏斗放大器。由于AD8479采用固定增益配置,放大器可适当进行补偿,因此单位增益可能不稳定。为保持稳定性,此处的一个设计要求是确保在放大器的增益滚降之前,放大器处于初始预期增益中。AD8479数据手册将典型带宽列为310 kHz,因此负基准电压反馈应在此频率之前滚降。通过利用低通滤波器连接AD8479输出,并缓冲滤波器的输出(在滤 波器后加缓冲器),以及将缓冲器输出反馈回AD8479的负基准引脚,由此AD8479可构建为高电压精密漏斗放大器。
对于低通滤波器,单极点RC滤波器会达到所需效果。还需要将低通滤波器中的电阻保持为值,以减少缓冲器的噪声,因为运放输入端的电流噪声乘以电阻值以及电阻本身的热噪声会终影响运放的输出噪声。此外,电阻值太小将需要大滤波电容才能实现相同的–3 dB频率,这可能会超过AD8479的驱动容性负载能力。如前所述,直流增益为1/60,为了保证运放的稳定,300 kHz时的增益应为单位增益。因此,由于使用了单极点RC滤波器,其应在5 kHz时发生滚降。为了实现上述特性,RC值选择10 nF和3.16 kΩ其RC也是标准电阻和电容值。
如前所述,低通滤波器的–3 dB为5 kHz。由于缓冲器会为AD8479内的运算放大器提供负反馈,因此当低通滤波器在f > 5 kHz开始滚降时,AD8479的输出增益也将同步增加。由于在低通滤波器 开始滚降时,AD8479输出也以20 dB/十倍频程的速率增加,由此滤波器的输出和缓冲器输出将持平。若缓冲器的输出作为系统的输出,则整个系统的带宽将仅受AD8479的带宽和输出范围的限制。这种限制是由于AD8479的输出随着输出频率大于5kHz后,其增益的增加而导致的,因此对于5 kHz及高于5 kHz的频率,此电路需要在输入电压范围和频率之间进行平衡。例如,150 kHz时30 V p-p输入将具有–6 dB的AD8479输出增益,从而产生15 V p-p,这接近AD8479的全功率带宽。
图4中的示波器显示了AD8479的配置漏斗放大器的结果。通道1显示的信号为100 Hz、1200 V p-p,为避免损坏示波器将信号衰减100倍。通道2是缓冲放大器的输出,结果完全符合预期。对于1200 V p-p输入,漏斗放大器的输出为20 V p-p。
图5中的示波器显示了30 V p-p、100 kHz输入信号的结果。和图4中一样,漏斗电路在100 kHz时也衰减1/60。
图6显示AD8479漏斗电路的阶跃响应。用15 V p-p方波驱动输入端可以实现建立时间在几微秒以内的250 mV p-p阶跃响应。
由于AD8479漏斗放大器配置会以比标准AD84791倍增益低的多的增益(衰减)获得差分信号,因此噪声得以降低。对于漏斗放大器的配置,100 Hz的频谱噪声密度为27 nV/√Hz, 0.1 Hz至10 Hz范围内的电压噪声峰峰值为580nV。如您所见,这些噪声值大约是AD8479数据手册中列出的噪声值的1/60,因此滤波器和缓冲器对噪声的影响可以忽略不计。这是由于在两级放大器电路中,第二级的噪声和失调电压被级的增益分压而至衰减。由于从AD8479 Ref–引脚到AD8479输出引脚之间的增益为–59,此(-1)为缓冲器噪声和失调电压将减小的因子(1/(59+1))。
一种应用是测量交流电动机的电压和电流。由于交流电源是数百伏电压,因此很难准确监测电流和电压。由于AD8479能够在这些电压下工作,因此可以使用分流器测量通过电机的电流。使用上述电路可以实现电机电压的测量,由此可轻松实现的功率监控解决方案。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。