微全分析系统的概念是在1990年首欠由瑞士Ciba2Geigy公司的Manz与Widmer提出的,当时主要强调了分析系统的“微”与“全”,及微管道网络的MEMS加工方法,而并未明确其外型特征。次年Manz等即在平板微芯片上实现了毛细管电泳与流动。微型全分析系统当前的发展前沿。微流控分析系统从以毛细管电泳分离为分析技术发展到液液萃取、过滤、无膜扩散等多种分离手段。其中多相层流分离微流控系统结构简单,有多种分离功能,具有广泛的应用前景。已有多篇文献报道采用多相层流技术实现芯片上对试样的无膜过滤、无膜参析和萃取分离。同时也有采用微加工有膜微渗析器完成质谱分析前试样前处理操作的报道。流控分析系统从以电渗流为主要液流驱动手段发展到流体动力气压、重动、离心力、剪切力等多种手段。
直至今日,各国科学家在这一领域做出更加显着地成绩。微流控技术作为当前分析科学的重要发展前沿,在研究与应用方面都取得了飞速的发展。
微流控芯片的原理
微流控芯片采用类似半导体的微机电加工技术在芯片上构建微流路系统,将实验与分析过程转载到由彼此联系的路径和液相小室组成的芯片结构上,加载生物样品和反应液后,采用微机械泵。电水力泵和电渗流等方法驱动芯片中缓冲液的流动,形成微流路,于芯片上进行一种或连续多种的反应。激光诱导荧光、电化学和化学等多种检测系统以及与质谱等分析手段结合的很多检测手段已经被用在微流控芯片中,对样品进行快速、准确和高通量分析。微流控芯片的特点是在一个芯片上可以形成多功能集成体系和数目众多的复合体系的微全分析系统?微型反应器是芯片实验室中常用的用于生物化学反应的结构,如毛细管电泳、聚合酶链反应、酶反应和DNA 杂交反应的微型反应器等 。其中电压驱动的毛细管电泳(Capillary Electrophoresis , CE) 比较容易在微流控芯片上实现,因而成为其中发展快的技术。它是在芯片上蚀刻毛细管通道,在电渗流的作用下样品液在通道中泳动,完成对样品的检测分析,如果在芯片上构建毛细管阵列,可在数分钟内完成对数百种样品的平行分析。自1992 年微流控芯片CE 首次报道以来,进展很快?首台商品仪器是微流控芯片CE ( 生化分析仪,Aglient) ,可提供用于核酸及蛋白质分析的微流控芯片产品。
芯片集成的单元部件越来越多,且集成的规模也归来越大,使着微流控芯片有着强大的集成性。同时可以大量平行处理样品,具有高通量的特点,分析速度快、耗低,物耗少,污染小,分析样品所需要的试剂量仅几微升至几十个微升,被分析的物质的体积甚至在纳升级或皮升级。
廉价,安全,因此,微流控分析系统在微型化。集成化合便携化方面的优势为其在生物医学研究、药物合成筛选、环境监测与保护、卫生检疫、司法鉴定、生物试剂的检测等众多领域的应用提供了极为广阔的前景。
一、光刻(lithography)和刻蚀技术(etching)
1.光刻工艺
光刻是用光刻胶、掩模和紫外光进行微制造 ,工艺如下 :
①仔细地将基片洗净;
②在干净的基片表面镀上一层阻挡层 ,例如铬、二氧化硅、氮化硅等;
③再用甩胶机在阻挡层上均匀地甩上一层几百 A厚的光敏材料——光刻胶。光刻胶的实际厚度与它的粘度有关 ,并与甩胶机的旋转速度的平方根成反比;
④在光掩模上制备所需的通道图案。将光掩模覆盖在基片上,用紫外光照射涂有光刻胶的基片,光刻胶发生光化学反应;
⑤用光刻胶配套显影液通过显影的化学方法除去经曝光的光刻胶。这样,可用制版的方法将底片上的二维几何图形地复制到光刻胶层上;
⑥烘干后 ,利用未曝光的光刻胶的保护作用 ,采用化学腐蚀的方法在阻挡层上腐蚀出底片上平面二维图形。
2.掩模制备
用光刻的方法加工微流控芯片时 ,必须首先制造光刻掩模。对掩模有如下要求:
①掩模的图形区和非图形区对光线的吸收或透射的反差要尽量大;
②掩模的缺陷如针孔、断条、桥连、脏点和线条的凹凸等要尽量少;
③掩模的图形要高。
通常用于大规模集成电路的光刻掩模材料有涂有光胶的镀铬玻璃板或石英板。用计算机制图系统将掩模图形转化为数据文件,再通过专用接口电路控制图形发生器中的爆光光源、可变光阑、工作台和镜头,在掩模材料上刻出所需的图形。但由于设备昂贵,国内一般科研单位需通过外协解决,延迟了研究周期。
由于微流控芯片的分辨率远低于大规模集成电路的要求,近来有报道使用简单的方法和设备制备掩模,用微机通过CAD软件将设计微通道的结构图转化为图象文件后,用高分辨率的打印机将图象打印到透明薄膜上,此透明薄膜可作为光刻用的掩模,基本能满足微流控分析芯片对掩模的要求。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。