探究雷达信号传输的应用和维护

时间:2018-08-31

  随着近年来网络通信技术的发展,中国民用航空中南地区空中交通管理局采用华为公司的HONET 接入网FA16 型设备,建立了一个以广州为节点,涵盖中南六省,立足中南辐射全国的FA16 网络,实现了雷达信息的联网,为空管调度指挥提供了一个安全高效、灵活多样的多业务通信专网。
  FA16 系统的子速率数据接口板,具有直接将多路低速数据复用成1 路64 Kb/s 信号进行传输的功能,可提供五路同步或三路异步子速率数据接口,对于空管调度指挥专网中速率较低的雷达信号能实现良好的支持,因此获得了广泛的应用。
  本文对子速率数据接口板的日常维护经验进行总结。
  1 常见故障
  目前FA16 系统的子速率数据接口板的主要业务就是雷达信号,根据日常的运行维护中遇到的各种故障情况进行统计发现,影响雷达信号的传输质量的因素主要有以下几种:
  (1)雷达源信号质量问题;
  (2)FA16 系统的2M 干线质量问题导致子速率数据接口板出现“X.50 协议帧失步”告警,造成雷达信号不稳;
  (3)子速率数据接口板硬件故障造成半连接中断,从而造成雷达信号中断;
  (4)雷达自动化处理系统的雷达信号协议转换器故障。
  对上述四种常见的故障情况进行统计和分析的结果表明,影响雷达信号传输质量的常见的故障情况是第二项,即子速率数据接口板出现“X.50 协议帧失步”告警,雷达信号传输质量受到影响有90% 以上是由于这一故障造成的。笔者就这一问题与华为公司的工程师进行了沟通,其反馈意见是子速率数据接口板出现“X.50 协议帧失步”告警,主要是由于FA16系统的2M 干线质量问题(PCM 帧失步)所导致。因此,可以说明,造成这一故障的原因有三个,分别为:


  (1)FA16 系统的2M 干线的帧失步;
  (2)由于2M 干线的帧失步而造成FA16 系统子速率数据接口板的帧失步;
  (3)由于FA16 系统子速率数据接口板的帧失步而造成雷达信号不稳。
  上述三个原因,分别属于雷达信号传输的不同阶段,每个阶段的传输质量都有各自的质量阈值,任何一个阶段的传输质量如果低于质量阈值的话,都会影响雷达信号的传输质量。因此,必须分别对这三个原因的质量阈值进行研究,以确定三者之间的逻辑关系,并终找出影响雷达信号传输质量的根源。
  2 阈值分析
  2.1 FA16 系统2M 干线的质量阈值
  首先考虑FA16 系统2M 干线的帧失步。所谓帧失步,是指在同步状态时帧头出现不可纠正的错误而造成链路失步。由于目前FA16 网络的干线都是租用电信运营商的2M 链路,即都是以SDH 组成的光纤网络所提供的光纤线路,因此可以从电信运营商的SDH 光纤网络的层面来考虑帧失步的原因。主要有如下原因:


  (1)SDH 网络的对端未送同步码,可能是编码盘不正常;
  (2)线路传输质量太差,即误码率太大;
  (3)SDH 网络的本盘时钟提取电路的故障或设备时钟选择不当;
  (4)SDH 网络的支路盘的故障。
  所以,从理论上而言,只要要求电信运营商加强线路质量的保障,就能避免由于所租用的2M 干线的帧失步而影响雷达信号传输质量,从而减少雷达信号不稳的故障因素。但是,电信运营商提供的2M 干线,有自己的线路质量标准,而在日常运行维护工作中经常出现,当FA16 系统网管的实时运行信息出现“X.50 协议帧失步”告警时,所租用的电信运营商的2M 干线却不会产生告警。因此,可以得到以下结论:电信运营商的2M 线路的质量阈值高于FA16 系统子速率数据接口板的质量阈值,即:
  LSRX ≤ L2M
  经过对SDH 复接器的帧同步性能进行研究发现,在复接器进入帧失步状态后,一旦从输入码流中检出n 比特同步码组,立即进入预同步状态,并对分接器的定时系统置初始相位,经过随后α -1帧连续校核。若在该位置上连续检出同步码组,进入同步状态;在同步状态,若连续β 帧丢失同步码组,则进入失步状态,重新开始搜捕过程。帧同步系统的性能主要就是由同步码组长度n、校核计数长度α 和保护计数长度β 决定的[1].根据文献[2] 和文献[3] 的研究结论,衡量帧同步系统性能的两个重要参数是帧同步平均持续时间和帧失步平均持续时间。帧同步平均持续时间TH 是指从确认同步起到确认失步时刻止的平均时间,其表达式为:
  

  帧失步平均持续时间是指从确认失步到重新获得同步的平均时间,失帧可以分为伪失帧和真失帧。伪失帧是指系统未发生失帧,由于误码使帧同步电路判断失误;真失帧是指系统确实发生了帧失步,例如滑动所产生的帧失步。伪失帧的帧失步平均持续时间TLF 和真失帧的帧失步平均持续时间TLT 的表达式如下:
  探究雷达信号传输的应用和维护
  式中,TS 表示STM-N 的帧周期125μs ;L 为帧长度, 对于STM-N为19 440×N比特;在正常运行时,误码率为10-3( 泊松分布),则p1 表示帧定位信号发生错误的概率, p1=1 -(1 -10-3)n ; pc 为在某个码元上出现伪同步码的概率, pc=(1/2)n.
  如前所述,电信运营商的SDH 网络中,考虑到电路实现的代价,一般采用自己运营成本的质量阈值,所以在STM-4 系统的同步方案中,一般选择α=2,β=4,n=17 的帧同步器[4],代入公式便可得到其帧同步系统的伪失帧的帧失步平均持续时间TLF为3.3×10-4 s,真失帧的帧失步平均持续时间TLT 为6.68×10-4 s,而其帧失步平均持续时间TL=TLF + TLT =9.98×10-4 s.
  因此,作为FA16 系统干线的电信运营商的2 M 线路,其质量阈值可以通过帧失步平均持续时间TL 来表征。当帧失步平均持续时间超过9.98×10-4 s 时,将导致FA16 系统的2 M传输干线中断,产生PCM告警。在日常的维护过程中,这种由于2 M 线路质量低于质量阈值而产生的干线中断,绝大多数情况是2 M干线的瞬断,其中断时间很短,在10 s ~ 1 min之内会自动恢复正常使用,但其很可能导致FA16 系统进行自动保护切换,将传输业务和保护协议等相关协议切换到备用的2M干线上传输,从而对日常维护工作带来一定的影响。
  2.2 子速率数据接口板和雷达信号比选的质量阈值在日常的维护过程中,雷达信号不稳这一故障的另一种表征是:并非每子速率数据接口板出现“X.50 协议帧失步”
  告警都会造成雷达信号不稳,这两者之间并没有明显的线性逻辑关系。
  为了解决这一实际维护中遇到的问题,将子速率数据接口板出现“X.50 协议帧失步”告警和雷达信号不稳这两者之间的关系理顺,并确定两者之间是否存在合理的逻辑关系。笔者对2008 年10 月26 日至2009 年5 月14 日期间的子速率数据接口板“ X.50 协议帧失步”告警和雷达信号不稳的故障记录进行了统计,其具体情况如图1 所示。可以看到,在统计的这段时间段中,FA16 系统SRX 板帧失步次数和雷达信号不稳情况的比例是2 或者更大(2008 年10 月和2009 年5 月由于不是整个月的数据进行统计,所以其比例稍微偏小)。通过FA16网络引接至广州的雷达信号,是引接到雷达自动化处理系统使用的,而雷达自动化处理系统在使用此雷达信号之前,会根据一定的误码门限值进行误码判断,对雷达信号进行比选,然后再送进雷达自动化处理系统中使用。因此,从图1 所显示的趋势来判断,可以得到以下的结论:雷达自动化处理系统对雷达信号进行比选所使用的误码门限值(也就是雷达信号的质量阈值)高于FA16 系统子速率数据接口板的质量阈值,即:
  探究雷达信号传输的应用和维护
  在与负责维护雷达自动化处理系统的设备部门进行沟通后得到确认,雷达自动化处理系统对雷达信号进行比选的质量阈值是帧误码率不高于2.5×10-4.由于PCM 数字通信系统均以8 比特组为传输单位,子速率数据接口板在接收到发送方的20 个8 比特包络组成的复用帧并解复用之后,将采用(6+2)封包结构对数据进行封包并传输至雷达自动化处理系统进行比选。在组成封包的8 个比特中,任一比特信息的丢失或错误都将造成数据帧误码,因此,其平均帧误码时间:
  同时,由于FA16 系统的子速率数据接口板的芯片算法属于华为公司的商业机密,因此暂时无法得知子速率数据接口板对于帧失步的判断和处理算法。但是,我们可以从理论层面对其进行分析,得到子速率数据接口板的理论质量阈值。可以推断,子速率数据接口板进行帧失步判断的依据是(6+2)封包结构中的F 比特,所以子速率数据接口板的理论帧失步平均持续时间TSRX 的表达式为:
  探究雷达信号传输的应用和维护
  式中,SSRX 数据速率表示子速率数据接口板的数据传输速率,P(F)表示在(6+2)封包结构中F 比特出现的概率。将实际数据代入公式(5),可计算得到子速率数据接口板的理论帧失步平均持续时间TSRX.
  2.3 子速率数据接口板传输雷达信号的质量阈值分析
  根据上面的分析,子速率数据接口板传输雷达信号时,主要的故障原因是FA16 系统的2M 干线质量问题导致子速率数据接口板出现“X.50 协议帧失步”告警,从而造成雷达信号不稳。同时,经过对电信运营商的2M 干线的帧失步平均持续时间TL、雷达自动化处理系统对雷达信号比选的平均帧误码时间T雷达比选和子速率数据接口板的理论帧失步平均持续时间TSRX 的分析计算,可以得到以下的结论:
  探究雷达信号传输的应用和维护
  这也就是说,在雷达信号传输的三个阶段中,FA16 系统子速率数据接口板的帧失步这一阶段的质量阈值,但雷达自动化处理系统对雷达信号比选的质量阈值决定着雷达信号的根本质量,只有整个雷达信号的传输过程都满足这一质量门限,才能保证雷达信号的传输质量。
  所以,必须要求电信运营商所提供的FA16 系统的2M干线,其帧失步平均持续时间必须小于雷达自动化处理系统对雷达信号比选的平均帧误码时间T雷达比选。但是,经过前文的分析计算,我们得到TL 要远大于T雷达比选,而这也正是造成我们在日常的值班维护中多次遇到雷达信号不稳但电信运营商的设备管理部门却反馈2M 链路运行正常,没有任何帧失步告警的不利于确保雷达信号传输质量的局面。所以,要从理论上彻底杜绝由于帧失步而影响雷达信号的传输质量,在租用FA16 干线时必须对电信运营商提出更高的2M 链路质量要求,只有在电信运营商保证其2M 链路的帧失步平均持续时间小于T雷达比选=3.125×10-5 s 时,雷达信号的传输才能免受任一环节帧失步故障的影响,提高雷达信号传输质量的保障力度。
  3 结 语
  本文对通过子速率数据接口板进行雷达信号传输的应用和维护进行了探讨,指出了影响雷达信号传输质量的主要的故障情况是子速率数据接口板出现“X.50 协议帧失步”告警,并详细分析了这一故障情况中雷达信号传输的质量阈值分析,通过理论计算得到了电信运营商的2M 干线的帧失步平均持续时间TL、雷达自动化处理系统对雷达信号比选的平均帧误码时间T雷达比选和子速率数据接口板的理论帧失步平均持续时间TSRX 等雷达信号传输过程中的三个不同阶段的质量阈值。得出结论:雷达自动化处理系统对雷达信号比选的质量阈值决定着雷达信号的根本质量,只有整个雷达信号的传输过程都满足这一质量门限,才能保证雷达信号的传输质量。这一结论对于我们进一步加强对雷达信号传输质量的保障力度,提高对雷达信号不稳等故障的处理能力,提供了一定的理论依据和指导作用。

上一篇:基于嵌入式技术的LED显示屏控制系统浅析
下一篇:基于PLC控制与无线遥控的手持操作器设计

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料