基于Linux系统下的多线程简单编程

时间:2011-09-04

 引言
  早在60年代线程( thread, 在台湾称作执行绪 是"进程"中某个单一顺序的控制流。)技术就被提出,但真正应用多线程到操作系统中去却是在80年代中期。这就不得不说个人了,他就是solaris,这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process,是操作系统结构的基础;是一个正在执行的程序;计算机中正在运行的程序实例;可以分配给处理器并由处理器执行的一个实体;由单一顺序的执行显示,一个当前状态和一组相关的系统资源所描述的活动单元。)中只允许有一个线程,这样多线程就意味着多进程。这样就大大影响了效率。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。就比如以前你能看网页就不能玩游戏,玩了游戏就不能看网页,而现在你能边玩游戏边看网页上的东西了。所以说我们现在可以边听音乐边写文,或者看网上的书都有着多线进程的功劳。接下来让我们首先了解下进程,线程以及多线程。

   简介进程,线程以及多线程

  在Linux 操作系统中,一个进程(Process)相当于一个任务(Task),进程具有一段可执行的程序、专用的系统堆栈空间、私有的"进程控制块"(即task_struct 数据结构)和独立的存储空间。

  内核空间是通过进程模拟线程的, 在用户空间用pthread 创建线程。与进程相似,但是没有自己的存储空间。 

    接着我们说说多线程。通常单独一个程序运行时, 缺省的包含一个主线程,主线程以函数地址的形式(如main 函数)提供程序的启动点,这就是单进程单线程的情况。若在main 函数中创建多个线程,则该程序运行时,操作系统为每个线程分配不同的CPU 时间片,并根据线程优先级进行调度。由于每个时间片时间很短, 看上去好象各个线程是并发执行的, 实际上同一时刻只有一个线程在运行,这就是单进程多线程的情况。若用fork 函数创建多个进程,而每个进程只采用默认的一个主线程,则程序运行时,由内核调度操作系统,将cpu 分配给各个进程使用,这就是多进程的情况。

  在前面我们知道了进程,线程以及多线程。但是我们还不知道为什么在有了进程的概念后,还要再引入线程呢?有必要性吗?使用多线程好处在哪里?什么的系统应该选用多线程?现在我们就来回答这些问题。

  我们使用多线程的个理由是和进程相比,它是一种非常"节俭"的多任务操作方式。我们知道,在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护它的代码段、堆栈段和数据段,这是一种"昂贵"的多任务工作方式。而运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间,而且,线程间彼此切换所需的时间也远远小于进程间切换所需要的时间。据统计,总的说来两者相差20倍左右,当然,在具体的系统上,这个数据可能会有较大的区别。但是相差很是明显的。

  我们使用多线程的第二个理由是线程间方便的通信机制。每个不同进程,它们都具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。线程则不一样,由于同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。当然,数据的共享也带来其他一些问题,有的变量不能同时被两个线程所修改,有的子程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时需要注意的地方。

  知道了以上两大优点,不和进程比较,多线程程序作为一种多任务、并发的工作方式,当然还有着以下的优点:

  1  使多CPU系统更加有效。操作系统会保证当线程数不大于CPU数目时,不同的线程运行于不同的CPU上。  

    2  提高应用程序响应。这对图形界面的程序尤其有意义,当一个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应键盘、鼠标、菜单的操作,而使用多线程技术,将耗时长的操作(time consuming)置于一个新的线程,可以避免这种尴尬的情况。就如我们常遇到的因为某件程序机子卡了,什么事情都不能做了。现在当然我们可以把那个导致卡机的程序关掉一切问题就解决了。但是在没有多线程程序的那会就不能这么做了,只能干等那个程序完全运行起来。  

    3  改善程序结构。一个既长又复杂的进程可以考虑分为多个线程,成为几个独立或半独立的运行部分,这样的程序会利于理解和修改。

  总的来说可以把一个正在运行的软件看做一个进程,就像一个大的管道,这个管道不运送什么东西,但里面有很多个小的管道,每个小管负责的东西不同~~而这些小管道就可以看做是一个个线程~如果运行的是一个单线程的程序的话,而这个线程需要连续运行几个功能时,如果正在运行的那个功能因碰到一个等待或者睡眠的指令的话,他就会停在那里不做任何事,此是这个CPU就空闲在那里,同时还会等待知道程序重新继续运行~~如果使用多线程技术,那么可以把这几个功能同时(并不是意义上的同时)运行,当其中一个功能遇到睡眠指令的时候,其他没有睡眠的继续运行,这个可以花更短的时间,让CPU更充分的被利用来完成需要的事情,线程通常共享一个代码区,但有各自独立的数据存储区。

  当然每件事都有两面性,在这里也是一样的。在单cpu 的机器上,采用多进程单线程(每个进程只创建一个线程) 和单进程多线程(一个进程创建多个线程)模型来设计程序,后者(多线程)的上下文切换开销就比前者要小的多。虽然多线程提供的优点是单个线程的进程所欠缺的,但是它们也不乏一些缺点:

  * 由于线程间共享存储器和进程状态, 一个线程的动作可能会对同一个进程中的其他线程产生影响。例如当两个线程同一时刻访问同一个变量时, 他们之间就会产生相互干扰。

  * 当多个线程试图并发调用同一个库函数时, 返回结果是不可预知的。如果多个线程调用某个库函数, 线程之间必须互相加以协调, 确保某个时刻只有一个线程调用该库函数。

  * 缺乏健壮性, 在单线程的操作系统中, 如果某个存储器出错, 操作系统会终止引发故障的进程, 但是在多线程操作系统中, 如果一个线程出错, 操作系统将终止整个进程, 从而其他的无关线程也被终止了。这与线程的正常终止是不同的。线程正常终止时可以通过调用exit 函数终止它所在的整个进程, 也可以终止自己而不影响进程内的其他线程。可以在主线程返回时终止该线程, 也可以调用pthreaad_exit 终止该线程。  

    接下来让我们就先来尝试编写一个简单的多线程程序。

  简单的多线程编程
  Linux系统下的多线程遵循POSIX(可移植操作系统接口)线程接口,称为pthread。编写基于Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。顺便说一下,Linux下pthread的实现是通过系统调用clone()来实现的。clone()是Linux所特有的系统调用,它的使用方式类似fork,关于clone()的详细情况,有兴趣的话可以查看相关书籍。下面我们展示两个个简单的多线程程序example1.c和pthread_create.c 。

    首先来看下多线程程序example1.c
   

/* example.c*/
#include <stdio.h>
#include <pthread.h>
void thread(void)
{
 int i;
 for(i=0;i<3;i )
  printf("This is a pthread.n");
}
int main(void)
{
 pthread_t id;
 int i,ret;
 ret=pthread_create(&id,NULL,(void *) thread,NULL);
 if(ret!=0){
  printf ("Create pthread error!n");
  exit (1);
 }
 for(i=0;i<3;i )
  printf("This is the main process.n");
 pthread_join(id,NULL);
 return (0);
}


  我们编译此程序:

gcc example1.c -lpthread -o example1


  运行example1,我们得到如下结果:

This is the main process.
This is a pthread.
This is the main process.
This is the main process.
This is a pthread.
This is a pthread.


  再次运行,我们可能得到如下结果:

This is a pthread.
This is the main process.
This is a pthread.
This is the main process.
This is a pthread.
This is the main process.

  前后两次结果不一样,这是两个线程争夺CPU资源的结果。上面的示例中,我们使用到了两个函数,pthread_create和pthread_join,并声明了一个pthread_t型的变量。

  pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义:

  typedef unsigned long int pthread_t;

  它是一个线程的标识符。函数pthread_create用来创建一个线程,它的原型为:

extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr,void *(*__start_routine) (void *), void *__arg));


  个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,一个参数是运行函数的参数。这里,我们的函数thread不需要参数,所以一个参数设为空指针。第二个参数我们也设为空指针,这样将生成默认属性的线程。对线程属性的设定和修改我们将在下一节阐述。当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。在创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。

  函数pthread_join用来等待一个线程的结束。函数原型为:

  extern int pthread_join __P ((pthread_t __th, void **__thread_return));

  个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为:

  extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));

  的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。要说明的是,一个线程不能被多个线程等待,否则个接收到信号的线程成功返回,其余调用pthread_join的线程则返回错误代码ESRCH。

  我们来看看pthread_create.c是怎么样的。

  ********************************************************************************************

  **    Name:pthread_create.c

  **    Used to study the multithread programming in Linux OS

  **    Author:zeickey

  **    Date:2006/9/16

  **    Copyright (c) 2006,All Rights Reserved!

  *********************************************************************************************/

  #include

  #include

  void *myThread1(void)

  {

  int i;

  for (i=0; i

  #include

  #include

  void *create(void *arg)

  {

  int *num;

  num=(int *)arg;

  printf("create parameter is %d \n",*num);

  return (void *)0;

  }

  int main(int argc ,char *argv[])

  {

  pthread_t tidp;

  int error;

  int test=4;

  int *attr=&test;

  error=pthread_create(&tidp,NULL,create,(void *)attr);

  if(error)

  {

  printf("pthread_create is created is not created … \n");

  return -1;

  }

  sleep(1);

  printf("pthread_create is created …\n");

  return 0;

  }

  编译方法:

  gcc -lpthread pthread_int.c -Wall

  执行结果:

  create parameter is 4

  pthread_create is created is  created …

  例程总结:

  可以看出来,我们在main函数中传递的整行指针,传递到我们新建的线程函数中。

  在这一节里,我们学习了如何编写简单的线程,并掌握了常用的几个函数pthread_create,pthread_join,pthread_exit和main。下面,我们来了解线程的一些常用属性以及如何设置这些属性。

  修改线程的属性

  在上面的例子里,我们用pthread_create函数创建了一个线程,在这个线程中,我们使用了默认参数,即将该函数的第二个参数设为NULL。的确,对大多数程序来说,使用默认属性就够了,但我们还是有必要来了解一下线程的有关属性。

  属性结构为pthread_attr_t,它同样在头文件/usr/include/pthread.h中定义,喜欢追根问底的人可以自己去查看。属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。属性对象主要包括是否绑定、是否分离、堆栈地址、堆栈大小、优先级。默认的属性为非绑定、非分离、缺省1M的堆栈、与父进程同样级别的优先级。

  通常我们在说到线程的绑定的时候,会牵涉到另外一个概念:轻进程(LWP:Light Weight Process)。轻进程可以理解为内核线程,它位于用户层和系统层之间。系统对线程资源的分配、对线程的控制是通过轻进程来实现的,一个轻进程可以控制一个或多个线程。默认状况下,启动多少轻进程、哪些轻进程来控制哪些线程是由系统来控制的,这种状况即称为非绑定的。绑定状况下,则顾名思义,即某个线程固定的"绑"在一个轻进程之上。被绑定的线程具有较高的响应速度,这是因为CPU时间片的调度是面向轻进程的,绑定的线程可以保证在需要的时候它总有一个轻进程可用。通过设置被绑定的轻进程的优先级和调度级可以使得绑定的线程满足诸如实时反应之类的要求。

  设置线程绑定状态的函数为pthread_attr_setscope,它有两个参数,个是指向属性结构的指针,第二个是绑定类型,它有两个取值:PTHREAD_SCOPE_SYSTEM(绑定的)和PTHREAD_SCOPE_PROCESS(非绑定的)。下面的代码即创建了一个绑定的线程。

#include <pthread.h>
pthread_attr_t attr;
pthread_t tid;
/*初始化属性值,均设为默认值*/
pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_create(&tid, &attr, (void *) my_function, NULL);


  线程的分离状态决定一个线程以什么样的方式来终止自己。在上面的例子中,我们采用了线程的默认属性,即为非分离状态,这种情况下,原有的线程等待创建的线程结束。只有当pthread_join()函数返回时,创建的线程才算终止,才能释放自己占用的系统资源。而分离线程不是这样子的,它没有被其他的线程所等待,自己运行结束了,线程也就终止了,马上释放系统资源。程序员应该根据自己的需要,选择适当的分离状态。设置线程分离状态的函数为pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)。第二个参数可选为PTHREAD_CREATE_DETACHED(分离线程)和 PTHREAD _CREATE_JOINABLE(非分离线程)。这里要注意的一点是,如果设置一个线程为分离线程,而这个线程运行又非常快,它很可能在pthread_create函数返回之前就终止了,它终止以后就可能将线程号和系统资源移交给其他的线程使用,这样调用pthread_create的线程就得到了错误的线程号。要避免这种情况可以采取一定的同步措施,简单的方法之一是可以在被创建的线程里调用pthread_cond_timewait函数,让这个线程等待一会儿,留出足够的时间让函数pthread_create返回。设置一段等待时间,是在多线程编程里常用的方法。但是注意不要使用诸如wait()之类的函数,它们是使整个进程睡眠,并不能解决线程同步的问题。

  另外一个可能常用的属性是线程的优先级,它存放在结构sched_param中。用函数pthread_attr_getschedparam和函数pthread_attr_setschedparam进行存放,一般说来,我们总是先取优先级,对取得的值修改后再存放回去。下面即是一段简单的例子。

#include <pthread.h>
#include <sched.h>
pthread_attr_t attr;
pthread_t tid;
sched_param param;
int newprio=20;
pthread_attr_init(&attr);
pthread_attr_getschedparam(&attr, &param);
param.sched_priority=newprio;
pthread_attr_setschedparam(&attr, &param);
pthread_create(&tid, &attr, (void *)myfunction, myarg);

   线程的数据处理

  与进程相比,线程的优点之一是具有数据的共享性,各个进程共享父进程处沿袭的数据段,可以方便的获得、修改数据。但这也给多线程编程带来了许多问题。我们必须当心有多个不同的进程访问相同的变量。许多函数是不可重入的,即同时不能运行一个函数的多个拷贝(除非使用不同的数据段)。在函数中声明的静态变量常常带来问题,函数的返回值也会有问题。因为如果返回的是函数内部静态声明的空间的地址,则在一个线程调用该函数得到地址后使用该地址指向的数据时,别的线程可能调用此函数并修改了这一段数据。在进程中共享的变量必须用关键字volatile来定义,这是为了防止编译器在优化时(如gcc中使用-OX参数)改变它们的使用方式。为了保护变量,我们必须使用信号量、互斥等方法来保证我们对变量的正确使用。

  多线程开发在 Linux 平台上已经有成熟的 Pthread 库支持。其涉及的多线程开发的基本概念主要包含三点:线程,互斥锁,条件。其中,线程操作又分线程的创建,退出,等待 3 种。互斥锁则包括 4 种操作,分别是创建,销毁,加锁和解锁。条件操作有 5 种操作:创建,销毁,触发,广播和等待。其他的一些线程扩展概念,如信号灯等,都可以通过上面的三个基本元素的基本操作封装出来。

  线程,互斥锁,条件在 Linux 平台上对应的 API 可以用表 1 归纳。为了方便熟悉 Windows 线程编程的读者熟悉 Linux 多线程开发的 API,我们在表中同时也列出 Windows SDK 库中所对应的 API 名称。


  多线程开发在 Linux 平台上已经有成熟的 Pthread 库支持。其涉及的多线程开发的基本概念主要包含三点:线程,互斥锁,条件。其中,线程操作又分线程的创建,退出,等待 3 种。互斥锁则包括 4 种操作,分别是创建,销毁,加锁和解锁。条件操作有 5 种操作:创建,销毁,触发,广播和等待。其他的一些线程扩展概念,如信号灯等,都可以通过上面的三个基本元素的基本操作封装出来。下面,我们就逐步介绍处理线程数据时的有关知识。

  1  线程数据

  在单线程的程序里,有两种基本的数据:局部变量以及全局变量。但在多线程程序里,还有第三种数据类型:线程数据(TSD: Thread-Specific Data)。它和全局变量很象,在线程内部,各个函数可以象使用全局变量一样调用它,但它对线程外部的其它线程是不可见的。这种数据的必要性是显而易见的。例如我们常见的变量errno,它返回标准的出错信息。它显然不能是一个局部变量,几乎每个函数都应该可以调用它;但它又不能是一个全局变量,否则在A线程里输出的很可能是B线程的出错信息。要实现诸如此类的变量,我们就必须使用线程数据。我们为每个线程数据创建一个键,它和这个键相关联,在各个线程里,都使用这个键来指代线程数据,但在不同的线程里,这个键代表的数据是不同的,在同一个线程里,它代表同样的数据内容。

  和线程数据相关的函数主要有4个:创建一个键;为一个键指定线程数据;从一个键读取线程数据;删除键。

  创建键的函数原型为:

extern int pthread_key_create __P ((pthread_key_t *__key,void (*__destr_function) (void *)));

  
  个参数为指向一个键值的指针,第二个参数指明了一个destructor函数,如果这个参数不为空,那么当每个线程结束时,系统将调用这个函数来释放绑定在这个键上的内存块。这个函数常和函数pthread_once ((pthread_once_t*once_control, void (*initroutine) (void)))一起使用,为了让这个键只被创建。函数pthread_once声明一个初始化函数,次调用pthread_once时它执行这个函数,以后的调用将被它忽略。

  在下面的例子中,我们来学习创建一个键,并将它和某个数据相关联。希望能给大家一个直观的展现。我们要定义一个函数createWindow,这个函数定义一个图形窗口(数据类型为Fl_Window *,这是图形界面开发工具FLTK中的数据类型)。由于各个线程都会调用这个函数,所以我们使用线程数据。

/* 声明一个键*/
pthread_key_t myWinKey;
/* 函数 createWindow */
void createWindow ( void ) {
 Fl_Window * win;
 static pthread_once_t once= PTHREAD_ONCE_INIT;
 /* 调用函数createMyKey,创建键*/
 pthread_once ( & once, createMyKey) ;
 /*win指向一个新建立的窗口*/
 win=new Fl_Window( 0, 0, 100, 100, "MyWindow");
 /* 对此窗口作一些可能的设置工作,如大小、位置、名称等*/
 setWindow(win);
 /* 将窗口指针值绑定在键myWinKey上*/
 pthread_setpecific ( myWinKey, win);
}
/* 函数 createMyKey,创建一个键,并指定了destructor */
void createMyKey ( void ) {
 pthread_keycreate(&myWinKey, freeWinKey);
}
/* 函数 freeWinKey,释放空间*/
void freeWinKey ( Fl_Window * win){
 delete win;
}


  这样,在不同的线程中调用函数createMyWin,都可以得到在线程内部均可见的窗口变量,这个变量通过函数pthread_getspecific得到。在上面的例子中,我们已经使用了函数pthread_setspecific来将线程数据和一个键绑定在一起。这两个函数的原型如下:

  extern int pthread_setspecific __P ((pthread_key_t __key,__const void *__pointer));
  extern void *pthread_getspecific __P ((pthread_key_t __key));

  这两个函数的参数意义以及使用方法是显而易见的。要注意的是用pthread_setspecific为一个键指定新的线程数据时,必须自己释放原有的线程数据以回收空间。这个过程函数pthread_key_delete用来删除一个键,这个键占用的内存将被释放,但同样要注意的是,它只释放键占用的内存,并不释放该键关联的线程数据所占用的内存资源,而且它也不会触发函数pthread_key_create中定义的destructor函数。线程数据的释放必须在释放键之前完成。

  2  互斥锁

  互斥锁是多线程编程中基本的概念,在开发中被广泛使用。互斥锁用来保证一段时间内只有一个线程在执行一段代码。必要性显而易见:假设各个线程向同一个文件顺序写入数据,得到的结果一定是灾难性的。还需要注意的是,与诸如 Windows 平台的互斥变量不同,在默认情况下,Linux 下的同一线程无法对同一互斥锁进行递归加速,否则将发生死锁。

  我们先看下面一段代码。这是一个读/写程序,它们公用一个缓冲区,并且我们假定一个缓冲区只能保存一条信息。即缓冲区只有两个状态:有信息或没有信息。

void reader_function ( void );
void writer_function ( void );
char buffer;
int buffer_has_item=0;
pthread_mutex_t mutex;
struct timespec delay;
void main ( void ){
 pthread_t reader;
 /* 定义延迟时间*/
 delay.tv_sec = 2;
 delay.tv_nec = 0;
 /* 用默认属性初始化一个互斥锁对象*/
 pthread_mutex_init (&mutex,NULL);
 pthread_create(&reader, pthread_attr_default, (void *)&reader_function), NULL);
 writer_function( );
}
void writer_function (void){
 while(1){
  /* 锁定互斥锁*/
  pthread_mutex_lock (&mutex);
  if (buffer_has_item==0){
   buffer=make_new_item( );
   buffer_has_item=1;
  }
  /* 打开互斥锁*/
  pthread_mutex_unlock(&mutex);
  pthread_delay_np(&delay);
 }
}
void reader_function(void){
 while(1){
  pthread_mutex_lock(&mutex);
  if(buffer_has_item==1){
   consume_item(buffer);
   buffer_has_item=0;
  }
  pthread_mutex_unlock(&mutex);
  pthread_delay_np(&delay);
 }
}


  这里声明了互斥锁变量mutex,结构pthread_mutex_t为不公开的数据类型,其中包含一个系统分配的属性对象。函数pthread_mutex_init用来生成一个互斥锁。NULL参数表明使用默认属性。如果需要声明特定属性的互斥锁,须调用函数pthread_mutexattr_init。函数pthread_mutexattr_setpshared和函数pthread_mutexattr_settype用来设置互斥锁属性。前一个函数设置属性pshared,它有两个取值,PTHREAD_PROCESS_PRIVATE和PTHREAD_PROCESS_SHARED。前者用来不同进程中的线程同步,后者用于同步本进程的不同线程。在上面的例子中,我们使用的是默认属性PTHREAD_PROCESS_ PRIVATE。后者用来设置互斥锁类型,可选的类型有PTHREAD_MUTEX_NORMAL、PTHREAD_MUTEX_ERRORCHECK、PTHREAD_MUTEX_RECURSIVE和PTHREAD _MUTEX_DEFAULT。它们分别定义了不同的上所、解锁机制,一般情况下,选用一个默认属性。

  pthread_mutex_lock声明开始用互斥锁上锁,此后的代码直至调用pthread_mutex_unlock为止,均被上锁,即同一时间只能被一个线程调用执行。当一个线程执行到pthread_mutex_lock处时,如果该锁此时被另一个线程使用,那此线程被阻塞,即程序将等待到另一个线程释放此互斥锁。在上面的例子中,我们使用了pthread_delay_np函数,让线程睡眠一段时间,就是为了防止一个线程始终占据此函数。

  上面给出的例子非常简单,就不再过多地介绍了,需要提出的是在使用互斥锁的过程中很有可能会出现死锁:两个线程试图同时占用两个资源,并按不同的次序锁定相应的互斥锁,例如两个线程都需要锁定互斥锁1和互斥锁2,a线程先锁定互斥锁1,b线程先锁定互斥锁2,这时就出现了死锁。此时我们可以使用函数pthread_mutex_trylock,它是函数pthread_mutex_lock的非阻塞版本,当它发现死锁不可避免时,它会返回相应的信息,程序员可以针对死锁做出相应的处理。另外不同的互斥锁类型对死锁的处理不一样,但主要的还是要程序员自己在程序设计注意这一点。

  3  条件变量

  前一节中我们讲述了如何使用互斥锁来实现线程间数据的共享和通信,互斥锁一个明显的缺点是它只有两种状态:锁定和非锁定。而条件变量通过允许线程阻塞和等待另一个线程发送信号的方法弥补了互斥锁的不足,它常和互斥锁一起使用。使用时,条件变量被用来阻塞一个线程,当条件不满足时,线程往往解开相应的互斥锁并等待条件发生变化。一旦其它的某个线程改变了条件变量,它将通知相应的条件变量唤醒一个或多个正被此条件变量阻塞的线程。这些线程将重新锁定互斥锁并重新测试条件是否满足。一般说来,条件变量被用来进行线承间的同步。条件变量的置位和复位有两种常用模型:种模型是当条件变量置位(signaled)以后,如果当前没有线程在等待,其状态会保持为置位(signaled),直到有等待的线程进入被触发,其状态才会变为复位(unsignaled),这种模型的采用以 Windows 平台上的 Auto-set Event 为代表。

  条件变量的结构为pthread_cond_t,函数pthread_cond_init()被用来初始化一个条件变量。它的原型为:

  extern int pthread_cond_init __P ((pthread_cond_t *__cond,__const pthread_condattr_t *__cond_attr));

  其中cond是一个指向结构pthread_cond_t的指针,cond_attr是一个指向结构pthread_condattr_t的指针。结构pthread_condattr_t是条件变量的属性结构,和互斥锁一样我们可以用它来设置条件变量是进程内可用还是进程间可用,默认值是PTHREAD_ PROCESS_PRIVATE,即此条件变量被同一进程内的各个线程使用。注意初始化条件变量只有未被使用时才能重新初始化或被释放。释放一个条件变量的函数为pthread_cond_ destroy(pthread_cond_t cond)。

  函数pthread_cond_wait()使线程阻塞在一个条件变量上。它的函数原型为:

  extern int pthread_cond_wait __P ((pthread_cond_t *__cond,pthread_mutex_t *__mutex));

  线程解开mutex指向的锁并被条件变量cond阻塞。线程可以被函数pthread_cond_signal和函数pthread_cond_broadcast唤醒,但是要注意的是,条件变量只是起阻塞和唤醒线程的作用,具体的判断条件还需用户给出,例如一个变量是否为0等等,这一点我们从后面的例子中可以看到。线程被唤醒后,它将重新检查判断条件是否满足,如果还不满足,一般说来线程应该仍阻塞在这里,被等待被下唤醒。这个过程一般用while语句实现。

  另一个用来阻塞线程的函数是pthread_cond_timedwait(),它的原型为:

  extern int pthread_cond_timedwait __P ((pthread_cond_t *__cond,pthread_mutex_t *__mutex, __const struct timespec *__abstime));

  它比函数pthread_cond_wait()多了一个时间参数,经历abstime段时间后,即使条件变量不满足,阻塞也被解除。

  函数pthread_cond_signal()的原型为:

  extern int pthread_cond_signal __P ((pthread_cond_t *__cond));

  它用来释放被阻塞在条件变量cond上的一个线程。多个线程阻塞在此条件变量上时,哪一个线程被唤醒是由线程的调度策略所决定的。要注意的是,必须用保护条件变量的互斥锁来保护这个函数,否则条件满足信号又可能在测试条件和调用pthread_cond_wait函数之间被发出,从而造成无限制的等待。下面是使用函数pthread_cond_wait()和函数pthread_cond_signal()的一个简单的例子。

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;
decrement_count () {
 pthread_mutex_lock (&count_lock);
 while(count==0)
  pthread_cond_wait( &count_nonzero, &count_lock);
  count=count -1;
 pthread_mutex_unlock (&count_lock);
}
increment_count(){
 pthread_mutex_lock(&count_lock);
 if(count==0)
  pthread_cond_signal(&count_nonzero);
  count=count 1;
 pthread_mutex_unlock(&count_lock);
}

  count值为0时,decrement函数在pthread_cond_wait处被阻塞,并打开互斥锁count_lock。此时,当调用到函数increment_count时,pthread_cond_signal()函数改变条件变量,告知decrement_count()停止阻塞。读者可以试着让两个线程分别运行这两个函数,看看会出现什么样的结果。

  函数pthread_cond_broadcast(pthread_cond_t *cond)用来唤醒所有被阻塞在条件变量cond上的线程。这些线程被唤醒后将再次竞争相应的互斥锁,所以必须小心使用这个函数。

  4  信号量

  信号量本质上是一个非负的整数计数器,它被用来控制对公共资源的访问。当公共资源增加时,调用函数sem_post()增加信号量。只有当信号量值大于0时,才能使用公共资源,使用后,函数sem_wait()减少信号量。函数sem_trywait()和函数pthread_ mutex_trylock()起同样的作用,它是函数sem_wait()的非阻塞版本。下面我们逐个介绍和信号量有关的一些函数,它们都在头文件/usr/include/semaphore.h中定义。

  信号量的数据类型为结构sem_t,它本质上是一个长整型的数。函数sem_init()用来初始化一个信号量。它的原型为:

  extern int sem_init __P ((sem_t *__sem, int __pshared, unsigned int __value));

  sem为指向信号量结构的一个指针;pshared不为0时此信号量在进程间共享,否则只能为当前进程的所有线程共享;value给出了信号量的初始值。

  函数sem_post( sem_t *sem )用来增加信号量的值。当有线程阻塞在这个信号量上时,调用这个函数会使其中的一个线程不在阻塞,选择机制同样是由线程的调度策略决定的。

  函数sem_wait( sem_t *sem )被用来阻塞当前线程直到信号量sem的值大于0,解除阻塞后将sem的值减一,表明公共资源经使用后减少。函数sem_trywait ( sem_t *sem )是函数sem_wait()的非阻塞版本,它直接将信号量sem的值减一。

  函数sem_destroy(sem_t *sem)用来释放信号量sem。

  接下来下面我们来看一个使用信号量的例子。在这个例子中一共有4个线程,其中两个线程负责从文件读取数据到公共的缓冲区,另两个线程从缓冲区读取数据作不同的处理(加和乘运算)。

/* File sem.c */
#include <stdio.h>
#include <pthread.h>
#include <semaphore.h>
#define MAXSTACK 100
int stack[MAXSTACK][2];
int size=0;
sem_t sem;
/* 从文件1.dat读取数据,每读,信号量加一*/
void ReadData1(void){
 FILE *fp=fopen("1.dat","r");
 while(!feof(fp)){
  fscanf(fp,"%d %d",&stack[size][0],&stack[size][1]);
  sem_post(&sem);
   size;
 }
 fclose(fp);
}
/*从文件2.dat读取数据*/
void ReadData2(void){
 FILE *fp=fopen("2.dat","r");
 while(!feof(fp)){
  fscanf(fp,"%d %d",&stack[size][0],&stack[size][1]);
  sem_post(&sem);
   size;
 }
 fclose(fp);
}
/*阻塞等待缓冲区有数据,读取数据后,释放空间,继续等待*/
void HandleData1(void){
 while(1){
  sem_wait(&sem);
  printf("Plus:%d %d=%dn",stack[size][0],stack[size][1],
  stack[size][0] stack[size][1]);
  --size;
 }
}
void HandleData2(void){
 while(1){
  sem_wait(&sem);
  printf("Multiply:%d*%d=%dn",stack[size][0],stack[size][1],
  stack[size][0]*stack[size][1]);
  --size;
 }
}
int main(void){
 pthread_t t1,t2,t3,t4;
 sem_init(&sem,0,0);
 pthread_create(&t1,NULL,(void *)HandleData1,NULL);
 pthread_create(&t2,NULL,(void *)HandleData2,NULL);
 pthread_create(&t3,NULL,(void *)ReadData1,NULL);
 pthread_create(&t4,NULL,(void *)ReadData2,NULL);
 /* 防止程序过早退出,让它在此无限期等待*/
 pthread_join(t1,NULL);
}

  在Linux下,我们用命令gcc -lpthread sem.c -o sem生成可执行文件sem。 我们事先编辑好数据文件1.dat和2.dat,假设它们的内容分别为1 2 3 4 5 6 7 8 9 10和 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ,我们运行sem,得到如下的结果:

  Multiply:-1*-2=2

  Plus:-1 -2=-3

  Multiply:9*10=90

  Plus:-9 -10=-19

  Multiply:-7*-8=56

  Plus:-5 -6=-11

  Multiply:-3*-4=12

  Plus:9 10=19

  Plus:7 8=15

  Plus:5 6=11

  从中我们可以看出各个线程间的竞争关系。而数值并未按我们原先的顺序显示出来这是由于size这个数值被各个线程任意修改的缘故。这也往往是多线程编程要注意的问题。

   线程标识

  函数原型:

  #include

  pthread_t pthread_self(void);

  pid_t getpid(void);

  getpid()用来取得目前进程的进程识别码,函数说明

  程序目的:实现在新建立的线程中打印该线程的id和进程id

  程序名称:pthread_id.c

  /********************************************************************************************

  **    Name:pthread_id.c

  **    Used to study the multithread programming in Linux OS.

  **    Showing how to get the thread's tid and the process's pid.

  **    Author:zeickey

  **    Date:2006/9/16

  **    Copyright (c) 2006,All Rights Reserved!

  *********************************************************************************************/

  #include

  #include

  #include  /*getpid()*/

  void *create(void *arg)

  {

  printf("New thread … \n");

  printf("This thread's id is %u  \n", (unsigned int)pthread_self());

  printf("The process pid is %d  \n",getpid());

  return (void *)0;

  }

  int main(int argc,char *argv[])

  {

  pthread_t tid;

  int error;

  printf("Main thread is starting … \n");

  error = pthread_create(&tid, NULL, create, NULL);

  if(error)

  {

  printf("thread is not created … \n");

  return -1;

  }

  printf("The main process's pid is %d  \n",getpid());

  sleep(1);

  return 0;

  }

  编译方法:

  gcc -Wall -lpthread pthread_id.c

  执行结果:

  Main thread is starting …

  The main process's pid is 3307

  New thread …

  This thread's id is 3086347152

  The process pid is 3307

  线程的终止

  如果进程中任何一个线程中调用exit,_Exit,或者是_exit,那么整个进程就会终止,与此类似,如果信号的默认的动作是终止进程,那么,把该信号发送到线程会终止进程。线程的正常退出的方式:

  (1) 线程只是从启动例程中返回,返回值是线程中的退出码

  (2) 线程可以被另一个进程进行终止

  (3) 线程自己调用pthread_exit函数

  两个重要的函数原型:

  #include

  void pthread_exit(void *rval_ptr);

  /*rval_ptr 线程退出返回的指针*/

  int pthread_join(pthread_t thread,void **rval_ptr);

  /*成功结束进程为0,否则为错误编码*/

    程序目的:线程正常退出,接受线程退出的返回码

  程序名称:pthread_exit.c

  /********************************************************************************************

  **    Name:pthread_exit.c

  **    Used to study the multithread programming in Linux OS

  **    A example showing a thread to exit and with a return code.

  **    Author:zeickey

  **    Date:2006/9/16

  **    Copyright (c) 2006,All Rights Reserved!

  *********************************************************************************************/

  #include

  #include

  #include

  void *create(void *arg)

  {

  printf("new thread is created … \n");

  return (void *)8;

  }

  int main(int argc,char *argv[])

  {

  pthread_t tid;

  int error;

  void *temp;

  error = pthread_create(&tid, NULL, create, NULL);

  if( error )

  {

  printf("thread is not created … \n");

  return -1;

  }

  error = pthread_join(tid, &temp);

  if( error )

  {

  printf("thread is not exit … \n");

  return -2;

  }

  printf("thread is exit code %d \n", (int )temp);

  return 0;

  }

  编译方法:

  gcc -Wall pthread_exit.c -lpthread

  执行结果:

  new thread is created …

  thread is exit code 8

  例程总结:

  可以看出来,线程退出可以返回线程的int数值。线程退出不仅仅可以返回线程的int数值,还可以返回一个复杂的数据结构。

  程序目的:线程结束返回一个复杂的数据结构

  程序名称:pthread_return_struct.c

  #include

  #include

  #include

  struct menber

  {

  int a;

  char *b;

  }temp={8,"zieckey"};

  void *create(void *arg)

  {

  printf("new thread … \n");

  return (void *)&temp;

  }

  int main(int argc,char *argv[])

  {

  int error;

  pthread_t tid;

  struct menber *c;

  error = pthread_create(&tid, NULL, create, NULL);

  if( error )

  {

  printf("new thread is not created … \n");

  return -1;

  }

  printf("main … \n");

  error = pthread_join(tid,(void *)&c);

  if( error )

  {

  printf("new thread is not exit … \n");

  return -2;

  }

  printf("c->a = %d  \n",c->a);

  printf("c->b = %s  \n",c->b);

  sleep(1);

  return 0;

  }

  编译方法:

  gcc -Wall pthread_return_struct.c -lpthread

  执行结果:

  main …

  new thread …

  c->a = 8

  c->b = zieckey

  例程总结:

  一定要记得返回的数据结构要是在这个数据要返回的结构没有释放的时候应用,如果数据结构已经发生变化,那返回的就不会是我们所需要的,而是脏数据。

    在 Linux 平台下,当处理线程结束时需要注意的一个问题就是如何让一个线程善始善终,让其所占资源得到正确释放。在 Linux 平台默认情况下,虽然各个线程之间是相互独立的,一个线程的终止不会去通知或影响其他的线程。但是已经终止的线程的资源并不会随着线程的终止而得到释放,我们需要调用 pthread_join() 来获得另一个线程的终止状态并且释放该线程所占的资源

    多线程的未来

    信息的世界发展是非常迅速的。多线程技术也不例外在不断发展着。 近日据相关消息透露,在HotChips会议上,AMD宣布下一代代号为Bulldozer“推土机”的处理器架构将采用单核多线程技术(multi-threadingtechnology),类似于Intel的超线程技术。

  超线程(HT)是英特尔所研发的一种技术,于2002年发布。超线程的英文是HT技术,全名为Hyper-Threading,中文又名超线程。超线程技术原先只应用于Xeon处理器中,当时称为Super-Threading。之后陆续应用在Pentium 4中,将技术主流化。早期代号为Jackson。

  AMD没有透露有关其多线程能力和更多的细节,只说推土机处理器将在2011年推出,支持单核多线程技术。不过,AMD的做法和Intel的 HT是不同的,更类似于Sun的同步多线程技术(SimultaneousMulti-Threading),由1个物理扩展到4个线程。“推土机扩展出的单多线程技术和Intel的超线程采用的是不同方式。”AMD的代表PatConway也证实了这一点。 有趣的是,早些时候AMD还表示暂不考虑SMT或其他多线程技术,并将它应用在当下的处理器中。然而,AMD也认同步多线程是未来处理器产品大幅提升性能的必要特征。

  不过,AMD副总裁兼服务器工作站业务总经理Patrick Patla接受采访时,并没有明确透露单核多线程技术的未来,而是继续重申已经公布的Opteron路线图:“如果你看一下我们路线图以及我们在多线程处理器市场的表现就会知道,我们相信每条线程都拥有完整的是目前的选择。2010年,我们就会推出12核处理器,2011年16核。我们相信未来几年内我们就能够完善支持48或64线程环境,让我们来看看2012到2013年会带来些什么吧。”

  既然2011年才是16核,那么2012到2013直接跳跃到48甚至64核似乎并不是那么正常。另外,Patrick Patla前面句句都在讲“核”,而到了后面又变成了“线程”,似乎就在暗示到时AMD可能会采纳单核多线程技术。
  小结
  其实多线程编程是一个很有意思也很有用的技术,使用多线程技术的网络蚂蚁是目前常用的工具之一,使用多线程技术的grep比单线程的grep要快上几倍,类似的例子还有很多。希望大家能用多线程技术写出高效实用的好程序来。当然发现多线程的更多用处就更好了。说不定你就会在线程的发展史上留下你不可磨灭脚印哦。只要努力什么不能实现呢。信息的世界总是在发现中成长的。你不定就是下一个发现者呢。

 


  

参考文献:

[1]. arg datasheet https://www.dzsc.com/datasheet/arg_2147916.html.


上一篇:奔驰开发新能源汽车
下一篇:基于蓝牙监控和操作汽车远程控制技术

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料