随着电子技术的不断发展,市场上对于能够替代光电耦合器并且具有改善性能、高集成度和低成本解决方案的需求十分强烈,数字隔离器就是美国模拟器件公司(Analog Devices ,Inc.,简称ADI )为了适应这种需要而开发出的一款适合高电压环境的有效隔离电路。混合动力和电动汽车(HEV/EV)将400V和更高电压的设计导入了汽车和交通领域。例如,
在严酷的汽车环境中,要应对如此高的电压和大的电流,就需要高度可靠且可长期稳定工作的方案,以便能有效地将此高压和其它电子功能电路(当然,重要的是驾驶!)隔离开来。
汽车、卡车和摩托车中采用的混合动力和电动传动系统,在交通运输产业引发了新的、前所未知的挑战。原来的12V电压网络现在需辅之以400V或更高的电池和电源系统,从而对汽车OEM和系统模块供货商提出了一系列全新要求。诸如高压电池、DC/DC转换器、用于驱动马达的逆变器,以及连接到230V/380V电网的车载充电器模块等混合动力/电动车内的全部功能,都提出了隔离要求(图1)。
图1:电动车典型系统架构。
隔离工业接口时,需要区分过程控制和工厂自动化应用。这是因为两者之间的差别会影响到数字接口设计的隔离工作。过程控制一般涉及到检测某些设备、系统或过程的不同物理量(如压力“与”温度)。每一个物理量都用一特定类型的传感器或变换器,其输出信号需要特定的信号调理。因此,多种不同的传感器需要不同的参数设置,如内部增益、采样率、测量重复性、以及阻抗缓冲。支持宽范围设置的ADC提供有多个接口控制线,除标准串行接口线要求隔离之外,所有这些控制线也都要求隔离。
与工业应用相较,汽车和运输应用对隔离有着不同要求。坚实可靠当然是必须的,而对磁“噪声”也必须要有强大抵抗力。车内的大功率水平(如工作在400V的100KW马达,意味着250A的工作电流)会在车内产生必须妥善处理的强磁场。所用零件的使用期限必须足够长以满足车辆预期寿命要求;例如必须满足大型运输应用几十年的使用要求。用于汽车环境的产品,将推动对汽车应用质量(Q1)的要求,以及要满足-40至+125℃的工作温度范围。
同时,这些领域的成本压力,将推动对更高系统整合度的要求,因此,具备隔离功能的单芯片产品,如CAN收发器、ADC或门极驱动器等组件就展现出了优势。
原则上,有四种不同的数字隔离技术方法:光、电感式,电容式和射频式。
光隔离技术使用透明绝缘隔离层进行光传输来实现光隔离。透过驱动LED(发光二极管),数字信号从电转换成光。然后通过隔离层传输这个光信号,再用光学检测组件(光电二极管、光电晶体管)将光信号转换回电信号。
光隔离的主要优点是光对电场或磁场具有免疫力及有可能输送静态信号。在隔离层的接收侧(flipside),光隔离器的工作频率(传输速度)受限于LED相对较慢的特性。对混合动力/电动汽车应用来说,光隔离有限的寿命是一个主要缺点。随着时间的推移,LED的效率将降低,从而需要加大信号驱动电流(通常从10mA开始),所以,随着时间的绵延,这种光隔离终将无法发挥功用。
电感隔离使用两个线圈之间的磁场变化实现跨隔离势垒(isolation barrier)的通讯。电感隔离法的一个优点是共模和差分传输间的不同,这意味着它的抗噪能力良好。这种方法的缺点是可能来自磁场的失真,对混合动力/电动汽车应用的马达控制环境来说,这种失真很常见。
电容隔离利用穿越隔离势垒的电场变化。电容隔离法的好处是对磁场的免疫力更强和长的系统寿命。电容隔离与电感隔离法的传输速度近似。
但电容隔离法的缺点是没有差分信号(即:信号和噪声共享同一信道)。另外,与电感隔离法一样,它们都不能直接传输静态信号(必须先与频率信号进行编码)。
数字隔离技术在我们生活中影响越来越大,随着电子技术的不断发展,数字隔离技术不止在混合动力和电动汽车(HEV/EV)等地方运用,还可以运用于建筑,工业,农业·····
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。