在通信用开关电源系统中,为了减少输入电流谐波,降低其对电网的污染,同时有利于后级DC-DC变换电路的稳定工作,交流输入侧多采用有源功率因数校正技术。功率因数是一项非常重要的指标,定义为有功功率和视在功率之比,理想情况下其值为1.然而普通开关电源的功率因数并不高,其原因是:交流输入经整流、大电容滤波后,仅在交流电压正弦波顶部附近滤波电容被充电,使得输入电流呈现脉冲波形。这种电流的基波是和输入电压同相位的,产生有功功率。但电流波形中较大的高次谐波与输入电压既不同频也不同相从而产生无功功率,通常功率因数很低。较低的功率因数不仅降低了电源利用率,同时因谐波电流流过线阻抗引起交互干扰,产生EMC 难题;大谐波电流增大了传输损耗的同时也给电网带来了危害,并可造成线路过载。可见,功率因数对通信系统中设备高效、安全、稳定的运行有着直接影响。
PFC的英文全称为"Power Factor Correction",意思是"功率因数校正",功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。 基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。
单相有源功率因数校正电路的控制主要包括应用乘法器的电流连续工作方式(CCM)和射随器的电流非连续工作方式(DCM)。输出功率在700W以上电源目前主要以CCM方式为主,主电路拓扑多采用升压(boost)变换器,这主要是由于boost变换器具有输入电流小、效率高、输入电压范围宽的优点;同时储能电感也可作为滤波器抑制RFI和EMI噪声。三相PFC整流装置具有许多优点:(1)输入功率高,功率额定值可达几千瓦以上;(2)单相PFC整流装置输入功率是一个两倍于工频变化的量,但在三相平衡装置中,三相输入功率脉动部分的总和为零,输入功率是一恒定值,三相PFC整流装置输出功率的脉动周期仅为单相全波整流的三分之一,脉动系数低,因此可以使用容量较小的输出电容,从而可以实现更快的输出电压动态响应。
三相APFC技术正成为众多学者研究的重点,但其实现有一定的困难,而且还未见成熟的专用控制芯片。若能将单相APFC电路简单整合成一个三相APFC电路,将能充分利用成熟的单相控制芯片,制作出满足要求的三相APFC装置。
1 由单相APFC组合成三相APFC的几种方法
单相PFC组合成三相PFC的技术优势是:(1)无需研究新的拓扑和控制方式,可直接应用发展比较成熟的单相PFC拓扑,以及相应的单相PFC控制芯片和控制方法;(2)电路由多个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性;(3)由于单向模块的使用,因此需要更少的维护和维修,而且有利于产品的标准化;(4)与三相PFC相比,不需要高压器件等。
下面将对由单相PFC实现三相PFC的几种方法分别进行介绍。
1)由三个分别带隔离DC/DC变换的单相PFC并联组成的方法
每个单相PFC后跟随一个隔离型DC/DC变换器,DC/DC变换器输出端并联起来,形成一个直流回路后向负载供电,如图l所示。此类电路即可采用三相三线制接法,也可用三相四线制的接法,很灵活且很简单。而且此类电路都可设计成单级形式,从而减少功率等级且动态响应比较快。但该类电路由三个完全独立的单相PFC及DC/DC变换器组成,由于需3个外加隔离的DC/DC变换器,因此用的器件比较多,成本较高。
直流-直流变换器(DC/DC)变换器广泛应用于远程及数据通讯、计算机、办公自动化设备、工业仪器仪表、军事、航天等领域,涉及到国民经济的各行各业。按额定功率的大小来划分,DC/DC可分为750W以上、750W~1W和1W以下3大类。进入20世纪90年代,DC/DC变换器在低功率范围内的增长率大幅度提高,其中6W~25WDC/DC变换器的增长率,这是因为它们大量用于直流测量和测试设备、计算机显示系统、计算机和军事通讯系统。由于微处理器的高速化,DC/DC变换器由低功率向中功率方向发展是必然的趋势,所以251W~750W的DC/DC变换器的增长率也是较快的,这主要是它用于服务性的医疗和实验设备、工业控制设备、远程通讯设备、多路通信及发送设备,DC/DC变换器在远程和数字通讯领域有着广阔的应用前景。
(1)单相PFC电路由全桥电路构成
图2电路的特点是DC/DC的开关控制比较简单,相对于其它电路更适合于大功率场合的应用。但是由于隔离变压器反射电压的影响,全桥电路相对于反激电路来说有更高的电流失真。
(2)单相PFC电路由Buck电路构成图5 用三个单相Buck变换器组成的三相PFC示意图图3所示Buck型电路的结构比较简单,同全桥电路相似,
由于隔离变压器反射电压的影响,其相对于反激电路来说也有较大的电流失真,但其谐波仍可以限定在比较低水平,达到IEC-1000的要求。另外,其可实现的功率等级的大小不如全桥高,但比反激式电路要大。
(3)单相PFC电路由反激电路构成
图4所示反激式电路有比较接近正弦的相电流,而且功率因数也更接近于单位功率因数。由于其本身的结构特点,所以不必以增加电压为代价即可达到隔离的作用。但相对于前两种电路其功率不容易做大。
(4)单相PFC电路由SEPIC电路构成
在Boost变换中,传统的隔离在此种情况下的应用并不理想,因为在电流连续情况下,器件将产生高的电压应力,在电流断续情况下将产生较大的输入电流失真。
图5所示的电路是用隔离SEPIC电路组成的三相PFC电路,SEPIC变换器的输入端类似于Boost电路,因此具有Boost电路的优点,如有低的输入电流失真和更小的EMI滤波器。在输出端SEPIC电路像反激式变换器,从而不必以增加电压为代价达到隔离的作用。
2)由三个单相PFC在输出端直接并联组成的方法
图6是将3个单相PFC变换器在其输出端直接并联而成的,因此结构相对较简单。由于该电路是三个单相。PFC变换器在输出端直接并联而成的,各相之间存在较严重的耦合。下面给出一种其相应的电路,如图7所示,电路中三个单相PFC之间存在相互影响,即使加入隔离电感和隔离二极管后也不能完全消除这种影响,导致电路的效率和输入电流THD指标有所下降,所以在大功率场合很少应用,但在中小功率场合有一定的使用价值。
图9是其一种实际的应用电路图,工作原理是,三相输入电压Ua,Ub,Uc(相位相差120°)。通过带有中心抽头的变压器变成两相电压Uab和Uck(相位相差90°),Uab和Uck.的矢量图如图10所示。
通过这样的变换,就变成两个三相单开关PFC的并联。尽管|Uab|≠|Uck|,但采用适当控制可以使两个电路平分输出电压,这一特性能够抵消电容中的低频纹波,从而有效地减少电容的温升,延长电容的寿命。因为每个电路独立工作,所以两个功率开关的开通和关断互不影响。不足是不能在整个负载范围实现功率因数校正等。
4)由矩阵式DC/DC变换器构成的方法
新颖组合式三相APFC拓扑结构示意图如图11所示,该电路由三个单相PFC电路组合而成,与前面所介绍的三相组合式PFC电路极其相似,不同点在于,该电路中三个单相PFC的输出并不是直接将三个单相直流输出电压并联,而是通过高频矩阵式功率变换器,使三个单相PFC直流输出耦合成一路直流输出。该电路的关键在于引入了矩阵变压器技术,充分利用了矩阵变压器磁耦合原理。其等效电路图如图12所示。
三个单相PFC经逆变后的交变电压相位、频率、幅值相同,通过三相矩阵高频变压器的耦合、变压及隔离,输出所需要的直流电压。三个单相PFC独立性比较强,输出之间相互电气隔离,解决了三个单相PFC之间相互影响的图12利用矩阵变换器实现的等效电路图这一技术难题。
2 结束语
三相PFC整流电路遇到的一个很大的难题就是三相之间的耦合,上述各种方法已分别对此难题进行了相应的解决。每相分别加隔离DC/DC的做法虽然可以解决此问题,但其代价就是使电路所用的器件增多。隔离电感和隔离电容的加入可以对耦合加以抑制,而且在中小功率场合也有一定的实用价值。通过矩阵变换器实现的电路解决了这一技术难题,三个单相PFC独立性比较强,输出之间相互电气隔离。当然代价也是使用器件相对较多。但是考虑到由单相PFC实现三相PFC的种种优势,上述各种方法还是有一定应用前景。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。