文中针对电容和电感的测量,简单介绍了关于LC振荡电路测量电容和电感的设计原理。同时通过实验证明该方案能进行高频电感和电容的测量。测量的能达到应有要求。
1 LC振荡电路物理模型的满足条件
①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。
③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。
能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中简单的振荡电路叫LC回路。
振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到,磁场能为零,回路中感应电流i=0. 放电完毕(充电开始):电场能为零,磁场能达到,回路中感应电流达到。
充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。
放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。
在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。
2 测量原理
采用LC振荡器的振荡原理,LC振荡器选择L或是C参数为固定值。通过LC的组合,振荡器起振,当测量电容时电感固定,测量电感时电容固定。通过LC振荡器的频率计算公式
其中,
可以计算出待测的电容或电感数值。
3 电路工作原理
3.1 电路框图设计
如图1所示。框图包括输入切换部分、振荡部分、分频部分、单片机部分、显示部分和键盘部分。此系统由STC89C51单片机作为控制,输入切换部分采用双刀双掷继电器完成待测电容或电感的线路切换,振荡电路工作在放大谐振状态,频率有高频管9018的集电极输出,把分频端级联实现100分频,终信号进入单片机,由单片机计算出频率,经过算法设计,实现未知电容或电感参数的测定。图1给出了系统的总体框架图。
图1 电路图总体框图设计
3.2 输入切换电路
输入切换电路使用双刀双掷继电器实现,主要负责电容和电感的输入切换,当连接上电容时系统通过继电器K2,如图2所示。两个IO都为0 V.由此得出没有短路在一起时,单片机判断为电容,从而选择测量电容的方法,此时通过单片机对IO1脚的设置把另一个双刀双掷开关K1,开关拨到上,上为与电容C2并联,如图2所示。而短路在一起时,单片机判断为电感,单片机选择测量电感的方法,此时通过单片机对IO1脚的设置把另一个双刀双掷开关K1开关拨到下,即与电感L并联。
3.3 振荡电路原理
振荡电路采用LC振荡电路,振荡的频率由L和C确定。振荡管采用9018,Rb1和Rb2为基极偏置,Rc为限流电阻,电容C1、C2和电感L构成正反馈选频网络,反馈信号取自电容C2两端。该电路也称为电容3点式振荡电路。在测量过程中,当测量电感时,输入电路自动把待测电感Lx并联到L的两端。当测量电容时,输入电路自动把要测量的电容Cx并联到C1的两端。
3.4 分频电路原理
分频电路采用74LS393数字分频芯片,分频端级联实现100分频,高频管9018的集电极输出振荡信号,之后把振荡器输出的信号100分频,频率将降到单片机测量的范围之内。
3.5 单片机实现电容和电感的计算
当把待测的电容或电感接入时,系统自动进行判断,根据判断结果确定算法。当判断到是电容时,系统计入电容的计算方式,电容的计算方式采用公式
根据测量得到频率和已知的L和C2,从而计算出Cx的值。当判断为电感时,系统进入电感的计算方式,电感的计算方式采用公式
根据测量到的频率和已知的C1、C2、L计算出Lx的值。
4 算法设计
系统上电初始化并且清屏,单片机初始化完成后,进入键盘扫描程序,当要进行电容或电感测量时,选择测量按键,系统进行自动判断并进行电容或电感的测量。当判断为电容时,系统选择电容的计算方法。当判断为电感时,系统选择电感的计算方法。下面是具体的程序流程图,如图3所示。
5 实际测量数据及其分析
5.1 提高测量的方法
采用该系统进行电容和电感的测量,由于元器的热稳定性和外界对电路的干扰影响,测量的结果会有所跳动,是因为三极管的结电容随着温度的变化而变化,从而影响测量结果,这也是电容三点式振荡电路不稳定的关键原因。基于以上原因,在测量过程中可以采用多次测量求平均值的方法提高测量。
5.2 实际测量
电路的固定参数如下:Rb1=10 kΩ,Rb2=10 kΩ,Rc=4 kΩ,Re=4.7 kΩ,Cb=1μF,Ce=0.1μF,选择不同的电容分别测试3次,得到表1.选择不同的电感分别测试3次,得到表2.由表得出测量值与标称值几乎接近,表明系统设计方案的正确性,满足一般的实验室和工程设计用到的电子元器件参数测试要求。
6 结束语
本系统采用单片机和振荡器起振的组合,计算电容和电感值。系统拥有比较智能的测量方法和简易的操作方法。然后进行频率的测量和测量结果的计算,终计算出被测对象的真实值。该系统通过相应的实验和实际的测量,能准确地测量电容和电感的数值,测量范围为0.001~22μF和0.01~100 mH,测量在5%以内。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。