无线传感器网络技术在医疗监护中的实现

时间:2011-08-24

 

  近年来,我国医疗器械的市场在稳步增长,医疗监护仪从过去主要用于危重病人的监护,发展到目前普通病房的监护,甚至基层医疗单位和社区医疗单位也提出了应用的需求。市场的发展使监护仪成为一种日益增长的、临床急需的设备之一。2009年,我国医疗监护仪市场需求规模达到13.6万台,整体市场销售额超过20亿元,过去三年市场需求复合增速达到33%.虽然我国监护仪市场经过一段时间的发展,市场需求已逐渐形成一定规模,但监护仪普及率(监护仪保有量/医疗机构床位数)仍然处于一个较低的水平。2009年整体水平大约在20%左右,与美国大约80%的普及率相比,仍有相当大的发展空间。同时这种传统的医疗监护方法容易增加病人心理压力和紧张情绪,进而影响病人身体状况,使诊断数据与病人真实的生理状况产生一定差距,影响对病情的正确诊断。为了使经常需要测量生理参数的患者(如慢性病人或者老年患者等)能够在随意运动的状态下接受监护,无线医疗监护技术已越来越受关注。

  本文以测量人体血氧饱和度为例,提出了一种基于ZigBee无线通信协议的无线传感器网络技术的医疗监护系统解决方案。该方案可以测量血氧饱和度参数,并将测量数据通过无线传感器网络传输到监控中心,监控中心对这些生理参数进行处理,并以此评价人体健康状况。

  本设计的关注点是如何实现传感器数据的无线传输,因此传感器采用市场上现有的人体血氧饱和度传感器。该系统可以集成多种传感器,使之具备应用在不同应用领域的不同功能,因此,本系统的应用领域很广,移植性很强,医疗监护领域的大部分检测传感器(如体温、脉搏、血压等)都可以集成到本系统上。

  1 无线传感器网络技术

  电系统(Micro-Electro-Mechanism System, MEMS)、片上系统(SOC, System on Chip)、无线通信和低功耗嵌入式技术的飞速发展,孕育出无线传感器网络(Wireless Sensor Networks, WSN),并以其低功耗、低成本、分布式和自组织的特点带来了信息感知的一场变革。无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳自组织网络。无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。基于MEMS的微传感技术和无线联网技术为无线传感器网络赋予了广阔的应用前景。这些潜在的应用领域可以归纳为:军事、航空、反恐、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。无线传感器网络是一种全新的信息获取平台,能够实时监测和采集网络分布区域内的各种检测对象的信息,并将这些信息发送到网关节点,以实现复杂的指定范围内目标检测与跟踪,具有快速展开、抗毁性强等特点,有着广阔的应用前景。

  无线传感器网络要求节点具备无线通信能力,目前有多种主流无线通信协议(见表1),这些传输协议都有各自的优势和特点。但就总体比较而言,目前无线传感器网络技术主要使用ZigBee协议。

 

 

  Zigbee是IEEE 802.15.4协议的代名词。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。这一名称来源于蜜蜂的八字舞,由于蜜蜂(bee)是靠飞翔和"嗡嗡"(zig)地抖动翅膀的"舞蹈"来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。ZigBee是一种无线连接,可工作在2.4GHz(流行)、868MHz(欧洲流行)和915 MHz(美国流行)3个频段上,分别具有250kbit/s、20kbit/s和40kbit/s的传输速率,它的传输距离在10-75m的范围内,但可以继续增加。

  2 系统硬件设计

  系统硬件分为人体血氧饱和度无线传感器节点和网关节点。

  2.1 无线传感器节点系统硬件总体设计

  系统由三大部分组成:血氧饱和度传感器、信号处理电路以及无线通信电路,如图1所示。

 


  血氧饱和度传感器采用透射式人体血氧传感器探头,输出4mA~20mA电流模拟信号。信号处理电路以TI公司的MSP43FG437为控制,无线通信电路以能够支持IEEE 802.15.4 ZigBee通信协议的Chipcon公司的CC2430-F128射频芯片为无线通信电路。值得注意的是为了实现真正意义上的"无线传感器",系统硬件设计要求小型化、紧凑化,而且为了便于以后该系统在应用领域的可移植性,系统电源部分设计为两节干电池供电,这样既能够发挥ZigBee通信协议的优势,又能够很好地实现无线传感器的"无线"、"便携"特点。

  2.2 信号处理电路硬件设计

  信号处理电路是本系统的部分,其作用是驱动人体血氧传感器工作,采集人体血氧饱和度传感器的模拟量信号,处理血氧饱和度信号,并将经过处理的信号通过片上串口通信方式传送给无线通信电路。

  信号处理电路以TI公司的MSP430FG437为控制。MSP430系列单片机是美国德州仪器公司生产的高集成度、高的单芯片系统(SoC),是目前工业界中性价比高、功耗低的Flash 16位RSIC微控制器,具有丰富的片内外设。MSP430单片机集中体现了现代单片机先进的低功耗设计理念,其时钟系统提供了丰富的软硬件组合形式。它包括一个片内DCO和两个晶体振荡器,可以产生三种系统适用的时钟信号,支持六种工作方式,有五种低功耗模式,可以通过软件对内部时钟系统的不同设置来控制芯片,使它处于不同工作方式,从而使整个系统达到功耗并发挥性能。值得一提的是MSP430单片机的超低功耗特点。MSP430系列单片机在1MHz的时钟条件下运行时,芯片的电流会在 200μA~400μA之间,时钟关断模式的功耗只有0.1?滋A.正因为如此,MSP430更适合应用于使用电池供电的仪器、仪表类产品中。

  2.3 人体血氧饱和度传感器驱动电路设计

  根据人体血氧饱和度的测量方法定义,本设计采用的透射式人体血氧饱和度传感器(如图2所示)。由两个能够发射不同波长的发光二极管构成。两个发光二极管需要按照一定频率交替发光,本设计采用H桥电路解决两个发光二极管交替发光的问题。

 


  2.4 无线通信电路设计

  本设计采用的CC2430芯片是Chipcon公司生产的首款符合ZigBee技术的2.4GHz射频系统单芯片,片上集成高性能8051内核、ADC、USART等。结合Chipcon公司先进的ZigBee协议栈、工具包和参考设计,展示了的ZigBee解决方案。它适用于各种ZigBee或类似ZigBee的无线网络节点,包括调谐器、路由器和终端设备。值得一提的是CC2430芯片的超低功耗特点,它工作时的电流损耗为27mA,在接收和发射模式下,电流损耗分别低于27mA或25mA.CC2430的休眠模式和转换到主动模式的超短时间特性,在休眠模式时仅0.9μA的流耗,外部中断或RTC能唤醒系统;在待机模式时少于0.6μA的流耗,外部的中断能唤醒系统,特别适合要求电池寿命非常长的应用。

  2.5 网关节点系统硬件设计

  本系统中人体血氧饱和度传感器节点为数据发送端。为了实现数据两点间通信,除了要具备发送端,还要具备接收端。以CC2430射频芯片为设计接收端。CC2430芯片接收到数据后,将数据通过串口通信方式传送给PC机,由此网关节点实现数据的接收和显示,如图3所示。

 


  3 系统软件设计

  本系统软件分为四部分:信号采集、信号处理、信号传输、信号接收。其中信号采集、信号处理代码是在发送端(即血氧饱和度传感器节点)中运行,如图4所示。信号接收代码在接收端(即网关节点)运行,如图5所示。


  信号采集程序主要完成两个功能:(1)驱动透射式人体血氧饱和度传感器工作,主要是驱动H桥电路按照一定频率切换电流传输方向;(2)通过MSP430单片机AD端口采集血氧饱和度数据。这部分代码程序在MSP430芯片中运行。

  信号处理程序的主要功能是滤波,这部分代码程序在MSP430芯片中运行。

  信号传输程序的主要功能是将由MSP430芯片处理好的数据通过ZigBee无线通信协议栈传输到另一个无线传感器节点,这部分代码在CC2430射频芯片内的8051内核中运行。

  信号接收程序的主要功能有两个:(1)接收其他传感器节点数据并通过串口将数据传送到PC机,这部分代码在CC2430射频芯片内的8051内核中运行;(2)PC机对数据进行处理,包括波形显示、数据保存,这部分代码在PC机中运行。

  当无限传感器节点和网关节点建立好之后,就要依靠ZigBee协议栈来实现点对点通信。本设计采用1.4.2版本的ZigBee协议栈API函数来实现。

  本设计对ZigBee无线通信协议在医疗监护领域中的应用进行了尝试性的实践,实现了一个人体血氧饱和传感器节点和一个网关节点之间的数据传输。现今无线传感器网络技术领域还有许多热点问题需要去研究,如安全传输问题、容错机制问题、自组织组网问题等。但是,无线传感器网络的灵活性、容错性、高感知能力、低费用以及快速布局等特点决定了它的应用领域必将极为广泛,也必然会对医疗监护事业产生巨大而深远的影响。

 

 


  
上一篇:浅谈测控测试设备的设计与实现
下一篇:设计公交车站牌报站屏

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料