BootLoader就是在操作系统内核运行之前运行的一段小程序。通过这段小程序,我们可以初始化硬件设备、建立内存空间映射图,从而将系统的软硬件环境带到一个合适状态,以便为终调用操作系统内核准备好正确的环境。在嵌入式系统中,通常并没有像BIOS那样的固件程序(注,有的嵌入式CPU也会内嵌一段短小的启动程序),因此整个系统的加载启动任务就完全由BootLoader来完成。比如在一个基于ARM7TDMI core的嵌入式系统中,系统在上电或复位时通常都从地址0x00000000处开始执行,而在这个地址处安排的通常就是系统的BootLoader程序。
通常,BootLoader是严重地依赖于硬件而实现的,特别是在嵌入式世界。因此,在嵌入式世界里建立一个通用的BootLoader几乎是不可能的。尽管如此,我们仍然可以对BootLoader归纳出一些通用的概念来,以指导用户特定的BootLoader设计与实现。
1 系统硬件平台简介
本系统采用是SamSung公司S3C2410处理器[ 2 ],它是专门为移动手持设备提供高性价比和高性能嵌入式微处理器解决方案。其内核是ARM920T,能工作在202.8MHz,为了减少系统总成本和减少外围器件,它集成了如下部件:分别为16KB指令和数据Cahce、1个LCD控制器、SDRAM控制器、NANDFLASH控制器、3通道UART、4通道DMA、4个具有PWM功能计时器和1个内部时钟、8通道10位ADC、触摸屏接口、I2S总线接口,2个USB主机接口、1个USB设备接口,2个SPI接口、SD和MMC卡接口、看门狗定时器、117位通用IO口、24位外部中断源、8通道10位AD控制器等。本文涉及S3C2410开发板硬件结构如图1所示。
图1 S3C2410硬件结构图
2 存储空间分布和映射图
Nand-flash内存是flash内存的一种,其内部采用非线性宏单元模式,为固态大容量内存的实现提供了廉价有效的解决方案。Nand-flash存储器具有容量较大,改写速度快等优点,适用于大量数据的存储,因而在业界得到了越来越广泛的应用,如嵌入式产品中包括数码相机、MP3随身听记忆卡、体积小巧的U盘等。NAND结构能提供极高的单元密度,可以达到高存储密度,并且写入和擦除的速度也很快。应用NAND的困难在于flash的管理和需要特殊的系统接口。
硬件平台Nandflash(型号是:K9F1208U0M[ 3])空间为64MB,SDRAM(型号是:HY57V561620[ 4 ],32Mx2)空间为64M(0x30000000-0x33ffffff),采用如图2所示存储空间分布图,因为Nandflash只能存储程序,无法运行程序。为了能够从Nandflash启动,上电复位时,S3C2410通过硬件逻辑把Nandflash前4KB内容复制到片内SRAM中,而片内SRAM被映射到地址0x0,这样就可以从地址0x0处取到有效指令,开始执行bootloader,完成把Nandflash中内核代码复制到sdram中等工作。
图2 引导代码和操作系统内核在Nandflash和存储空间中分布情况
3 Bootloader设计流程
Bootloader引导程序是硬件上电复位后首先运行代码,由它来加载嵌入式操作系统。然后由操作系统接管整个系统,进行进程管理、内存管理、磁盘管理和各个外设管理等工作。 BootLoader是操作系统内核运行之前一段自举程序,用来初始化硬件设备、改变处理器运行模式和重组中断向量,建立内存空间映射图,将系统软硬件环境带到一个由用户定制特定状态,然后加载操作系统内核。从操作系统角度来看,Bootloader总目标就是正确地调用内核来执行。Bootloader一般分为stage1和stage2两大部分[ 5 ],对于依赖于CPU体系结构代码,比如设备初始化代码等,通常都放在stage1中,而且通常都用汇编语言来实现,以达到短小精悍目,也就是前面说启动代码。而stage2则通常用C语言来实现,这样可以实现复杂功能,而且代码会具有更好可读性和可移植性。
3.1 Bootloaderstage1
这部分代码必须首先完成一些基本硬件初始化。为stage2 执行以及随后内核执行准备好一些基本硬件环境。Bootloader stage1 一般通用内容包括:
(1)设置中断和异常向量;(2)禁止看门狗;(3) 屏蔽所有中断, 在Boot Loader 执行全过程中可以不必响应任何中断, 中断屏蔽可以通过写CPU 中断屏蔽寄存器或状态寄存器CPSR 寄存器来完成;(4) 设置CPU 速度和时钟频率;(5) 对RAM进行初始化, 包括正确设置系统内存控制器功能寄存器等;(6)初始化LED或UART,就是通过GPIO来驱动LED,也可以通过初始化UART向串口打印Bootloader调试信息来表明系统状态是OK还是ERROR,以便跟踪系统运行情况;(7)关闭CPU 内部指令/数据高速缓存(cache);(8)为加载Bootloaderstage2准备RAM空间;(9)设置好堆栈;(10)跳转到stage2C入口点;其流程图如图3所示。
图3 Bootloaderstage1实现
3.2 Bootloaderstage2
为了让程序跳入C 语言"main"函数, 我们采用直接跳转到"main"函数方法, 实现代码如下:
b Main
进入main 函数后即可以开始本阶段stage2 初始化任务, 这包括:
(1) 如果在stage1没有初始化UART,这时候至少初始化一个串口, 以便和终端用户进行交互,当然也可以继续点亮或熄灭LED来判断程序执行情况;
(2) 修改时钟频率;
(3) 使能指令Cache;
(5) 从串口中打印一些必要交互信息,了解系统状态;
(6) 初始化中断, 包括屏蔽中断, 清除中断悬挂标志, 初始化中断向量表, 注册需要中断处理函数等;
(8)打印版本、时间等信息,并从Nandflash复制内核到SDRAM中;
(9)修改指针,直接跳到内核在SDRAM中首地址处,至此,完成了Bootloader全部运行加载工作;
下面是main()函数和从Nandflash复制内核到SDRAM中ReadImageFromNandflash()函数具体实现,但省略了一些具体细节,包括从串口打印启动、交互、调试信息和一些具体函数实现。一些具体函数实现可以参考三星评估版源代码。
void Main(void)
{
JumpAddr=0x30200000; //拷贝内核到sdram中起始地址,也是内核开始执行地址
ChangeClockDivider(1,1); //1:2:4
ChangeMPllValue(0x5c,0x1,0x1); // FCLK=202.8MHz
MMU_EnableICache(); //使能指令Cache
Uart_Init(); // 初始化串口
Port_Init(); //初始化I/O口
NF_Init(); //初始化Nandflash控制器
NF_ReadID(); //读取Nandflash存储器ID号
ReadImageFromNandflash();//把存储在Nandflash中内核拷贝到SDRAM中
rINTMSK=BIT_ALLMSK; //屏蔽所有中断
Launch(JumpAddr); //跳转到sdram中内核开始处,并运行内核
}
从Nandflash(Flash是K9F1208U0M)拷贝内核到SDRAM函数具体实现如下:
void ReadImageFromNandflash(void)
{
U8 Image_Buf[512];
U32 Sram_Space=0;
U32 j,k, numberblock;
static U32 i, SECTOR_SIZE=512;
static U8 isbad;
volatile U32 IMAGE_BASE=0x30200000; //内核在sdram中运行开始地址
rINTMSK = BIT_ALLMSK; //屏蔽所有中断
i=2; //从第2个block开始拷贝内核,第0个用于存储本文bootloader,第1个没用到
numberblock=2047; //拷贝多少个block到sdram中,视内核大小设置此值
while(1)
{
nextblock:
isbad=0;
isbad=NF_IsBadBlock(i); //判断正在拷贝block是否是坏block
if (isbad) //是坏block,就进行相应处理;否则就忽略此处,进行下面拷贝
{
i=i 1; //调整,指向下一个block
isbad=0;
if(i>= numberblock) //判断是否拷贝完了所需block
{
Launch(JumpAddr); //拷贝完了所需block,就跳到sdram中内核开始处
}
goto nextblock;
}
for(k=0;k<32;k ) //1 block=32 pages
{ // FMD_ReadSector()函数实现从Nandflash存储器中读取数据到数据缓冲区中
FMD_ReadSector(i, (U8 *)&Image_Buf, k);
for (j=0;j<SECTOR_SIZE;j ) //1 page=512 bytes
{ //从数据缓冲区中拷贝到sdram中
*((U8 *)(IMAGE_BASE Sram_Space j))=Image_Buf[j];
}
Sram_Space=Sram_Space SECTOR_SIZE; //调整sdram中偏移地址
}
i=i 1; //调整,指向下一个block
if(i>= numberblock) //判断是否拷贝完了所需block
{
Launch(JumpAddr); //拷贝完了所需block,就跳到sdram中内核开始处
}
}
}
4 试验结果
由于三星公司S3C2410集成了Nandflash控制器,它通过硬件逻辑把Nandflash前4KB内容,即把Bootloader复制到片内sram中,并被映射到地址0x0处。通过跳线设置默认从nandflash启动,那么,系统每次上电或复位后,首先开始运行就是Bootloader.使用ADS1.2集成开发环境建立Bootloader应用工程,添加必需文件并设置好编译环境,如BootloaderRO_Base设置为0x0,RW_Base设置为0x33ff0000等,调试并生成可执行二进制文件,通过JTAG接口把Bootloader烧写到Nandflash第0个block地址开始处,通过usb工具把操作系统烧写到第2个block地址开始处,复位启动系统运行后结果如图4所示,该程序用于基于uCOS操作系统图像采集系统引导。
图4 Bootloader引导运行系统
5 结论
Bootloader设计与实现是一个非常复杂过程,因此要根据具体硬件和软件需求分析来进行移植或设计。本文设计Bootloader完成主要功能包括:试验板硬件初始化、串口初始化、时钟频率修改以及从Nandflash复制操作系统到SDRAM中运行等,并通过PC机上超级终端显示了正确启动运行信息,且可执行代码只有3K左右。因此,本文所详细描述Bootloader启动运行全过程,对理解、设计和移植Bootloader具有一定参考意义。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。