有一种把两只单方向作用的电磁铁相对安装而成为双向作用的电磁换向阀,采用轮流通电的方式,使电磁铁通过各自的顶杆把换向阀当中的阀心推来推去,完成油路的通断与换向。它所存在的缺陷是:控制系统只能进行通断式操作和实现固定行程极限位置的往返动作,执行有限位置的控制,其功能也是单纯的。
还有一种用直流比例电磁铁驱动的比例电磁阀,依靠输入电信号的强度变化,使比例电磁铁产生的磁阻拉力通过与弹簧的力平衡直接控制阀心的位置,阀心不仅可以换位,而且换位的行程还可以连续地或按比例地变化,因而连通油口间的通流面积也可以连续地或按比例地变化,所以这种比例电磁阀不仅可以控制执行元件的运动方向,而且还可以控制其运动速度。但它存在的不足之处是:这种比例电磁阀当遇到电源因故中断时,阀的现有工作状态不能保持下来,这种缺乏"记忆"功能的比例电磁阀常会使一些连续作业的自动化机械或自动生产线造成系统失灵或引发事故。
电路是否符合这些要求,同时只占用一个小型表面贴装足迹。 U2是350mA的驱动器,带有内置模拟和PWM调光控制(MAX16804可),通常用于驱动高亮度发光二极管。在此应用中,它的开漏输出(OUT)和电流检测端子(CS)的直接连接到电磁铁终端。电磁阀电流由R6设置。该电路驱动直流电磁铁范围从6V到40V直流注册,只用电磁铁的6V至40V直流电源。这是测试使用的是LEDex 24V的拉线圈,额定电流高达二百九十毫安。
U1的(MAX5474)是一个32抽头,非易失,线性变化数字电位器。作为一个可变电阻连接,其内部形成一个100kΩ的可变电阻与R5分压器产生一个在U2的DIM输入为0V至3.17V模拟电压。激活后通过抑制SW1的电位器和设置使用SW2的变动的方向(打开了,为下关闭),你可以增加此与各SW3的切换(SW1的关闭)电压。第三个步骤可用,因此32压和释放的SW3的循环遍历范围从0V至3.17V.公式1给出了在滑动端的位置上在点心(的VDIM)近似电压:
VDIM ≈ 5V((N - 1)3225.8Ω)/((N - 1)3225.8Ω + R5)(Eq. 1)
其中R5的=56.2kΩ,N是N个抽头步骤(0≤n时≤32)。 R3中,R4和C2的反跳的SW3的脉冲递增/递减。再次,使按SW1的变化,按SW2(或不)控制的方向。 U2乐队在200Hz电磁开关,可变的PWM占空比在其价值DIM引脚电压而定。
U2是由电磁阀的电源供应器(在这种情况下24V的)。 U1的是由U2的V5的针,5V电源,可高达2mA的电流源。电容C1,C4和C5的旁路在各自的IC引脚的电源电压。可选的大容量含率电容(C3)可能需要如果电路是从直流源的距离。
为了适应行动U2的PWM应用,续流二极管D1允许电流通过电磁线圈流通每次的电源开关关闭(每秒200次)。 U2提供了间接的短路和热保护,以防止其对过流和短路损坏的线圈或附加条件导致短路输出。通过连接跳线器JU1控制的EN输入(引脚19)的VIN(启用)或GND(禁用)U2.
电磁驱动电压和电流脉冲产生电路时在26%占空比工作。这代表了电磁占空比电压和电流要求32.4mARMS电磁线圈通电拉在电磁柱塞的0.0312in距离。
图2 从图1这些电磁电压和电流波形产生占空比为26%和76%的占空比0.3215in的0.0312in柱塞的距离。
图3显示了电磁驱动电压和电流脉冲产生电路时在76%的工作周期运行。这代表了电磁占空比电压和电流要求211mARMS电磁线圈通电拉在电磁柱塞的0.312in的距离。
图3 这些线圈的电压和电流的波形图1电路产生一个0.31in柱塞的距离。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。