MAX12557的原理设计和布局指导

时间:2007-08-01
摘要:本文讨论了在中频(IF)和基带应用中,进行高速模拟-数字转换器(ADC)设计时,如何正确地进行元件的选择、放置等布局技术。文章以MAX12557高分辨率、高速数据转换器为例,给出了建立一个化设计的指导方针:正确的高速布局技术,旁路和去耦技巧,元件的选择和放置,以及热管理技术等。

引言

Maxim公司的14位双路ADC芯片MAX12557针对65Msps采样速率进行优化,适合所有IF和基带应用。本文旨在作为一个简明的辅助资源,为该器件的原理设计和布局提供指导性意见。意在作为该ADC器件手册及其评估板手册的补充。用户应该审视其特定应用,并参考所有可获得的资源,以便使该器件在其目标应用中发挥性能。

本文分为三个部分:一般性建议原理设计建议布局建议一般性建议概要介绍了如何在应用中发挥器件性能的设计实践。主要讨论了ADC外围元器件布局方面一些好的习惯,以及和PCB本身相关的一些建议。原理设计建议提供了一些为重要和敏感的器件引脚上元件的参数。,布局建议部分详细解说了如何在转换器周围放置外围元件,指出了哪些外部元件应该放置在顶层,哪些应放在底层,并在提供了一些有关PCB的更多信息。

请参考图1的引出脚示意图,和表1所列的MAX12557的引脚说明。MAX12557的评估(EV)板提供多种选择,允许选择单端或差分时钟输入、单端或差分模拟输入、以及内部或外部基准等。因此,图2-5的评估板电路图中使用的外围元件和配置比正常应用中多。,图67还给出了评估板的顶层和底层的丝印和元件布局。

图1.  MAX12557的引脚排列
点击大图
图1. MAX12557的引脚排列

表1. MAX12557引脚说明

PIN NAME FUNCTION
1, 4, 5, 9, 13, 14, 17 GND Converter Ground. Connect all ground pins and the exposed paddle (EP) together.
2 INAP Channel A Positive Analog Input
3 INAN Channel A Negative Analog Input
6 COMA Channel A Common-Mode Voltage I/O.
7 REFAP Channel A Positive Reference I/O. Channel A conversion range is ±2/3 x (VREFAP-VREFAN).
8 REFAN Channel A Negative Reference I/O. Channel A conversion range is ±2/3 x (VREFAP-VREFAN).
10 REFBN Channel B Negative Reference I/O. Channel B conversion range is ±2/3 x (VREFBP-VREFBN).
11 REFBP Channel B Positive Reference I/O. Channel B conversion range is ±2/3 x (VREFBP-VREFBN).
12 COMB Channel B Common-Mode Voltage I/O
15 INBN Channel B Negative Analog Input
16 INBP Channel B Positive Analog Input
18 DIFFCLK//SECLK\ Differential/Single-Ended Input Clock Drive. This input selects between single-ended or differential clock input drives.
DIFFCLK//SECLK\ = GND: Selects single-ended clock input drive.
DIFFCLK//SECLK\ = OVDD: Selects differential clock input drive.
19 CLKN Negative Clock Input. In differential clock input mode (DIFFCLK//SECLK\ = OVDD or VDD), connect a differential clock signal between CLKP and CLKN. In single-ended clock mode (DIFFCLK//SECLK\ = GND), apply the clock signal to CLKP and tie CLKN to GND.
20 CLKP Positive Clock Input. In differential clock input mode (DIFFCLK//SECLK\ = OVDD or VDD), connect a differential clock signal between CLKP and CLKN. In single-ended clock mode (DIFFCLK//SECLK\ = GND), apply the single-ended clock signal to CLKP and connect CLKN to GND.
21 DIV2 Divide-by-Two Clock Divider Digital Control Input
22 DIV4 Divide-by-Four Clock Divider Digital Control Input
23-26, 61, 62, 63 VDD Analog Power Input. Connect VDD to a 3.15V to 3.60V power supply. Connect all VDD pins to the same potential.
27, 43, 60 OVDD Output Driver Power Input. Connect OVDD to a 1.7V to VDD power supply.
28, 29, 45, 46 N.C. No Connect
30 D0B Channel B CMOS Digital Output, Bit 0 (LSB)
31 D1B Channel B CMOS Digital Output, Bit 1
32 D2B Channel B CMOS Digital Output, Bit 2
33 D3B Channel B CMOS Digital Output, Bit 3
34 D4B Channel B CMOS Digital Output, Bit 4
35 D5B Channel B CMOS Digital Output, Bit 5
36 D6B Channel B CMOS Digital Output, Bit 6
37 D7B Channel B CMOS Digital Output, Bit 7
38 D8B Channel B CMOS Digital Output, Bit 8
39 D9B Channel B CMOS Digital Output, Bit 9
40 D10B Channel B CMOS Digital Output, Bit 10
41 D13B Channel B CMOS Digital Output, Bit 11 (MSB)
42 DORB Channel B Data Out-of-Range Indicator. The DORB digital output indicates when the channel B analog input voltage is out of range.
DORB = 1: Digital outputs exceed full-scale range.
DORB = 0: Digital outputs are within full-scale range.
44 DAV Data Valid Digital Output. The rising edge of DAV indicates that data is present on the digital outputs. The evaluation kit utilizes DAV to latch data into external back-end digital logic.
47 D0A Channel A CMOS Digital Output, Bit 0 (LSB)
48 D1A Channel A CMOS Digital Output, Bit 1
49 D2A Channel A CMOS Digital Output, Bit 2
50 D3A Channel A CMOS Digital Output, Bit 3
51 D4A Channel A CMOS Digital Output, Bit 4
52 D5A Channel A CMOS Digital Output, Bit 5
53 D6A Channel A CMOS Digital Output, Bit 6
54 D7A Channel A CMOS Digital Output, Bit 7
55 D8A Channel A CMOS Digital Output, Bit 8
56 D9A Channel A CMOS Digital Output, Bit 9
57 D10A Channel A CMOS Digital Output, Bit 10
58 D13A Channel A CMOS Digital Output, Bit 11 (MSB)
59 DORA Channel A Data Out-of-Range Indicator. The DORA digital output indicates when the channel A analog input voltage is out of range. DORA = 1: Digital outputs exceed full-scale range.
DORA = 0: Digital outputs are within full-scale range.
64 G//T\ Output Format Select Digital Input. G//T\ = GND: Two's complement output format selected.
G//T\ = OVDD: Gray code output format selected.
65 PD Power Down Digital Input. PD = GND: ADCs are fully operational.
PD = OVDD: ADCs are powered down.
66 SHREF Shared Reference Digital Input. SHREF = VDD: Shared Reference Enabled SHREF = GND: Shared Reference Disabled When sharing the reference, externally connect REFAP and REFBP together to ensure that VREFAP equals VREFBP. Similarly, when sharing the reference, externally connect REFAN to REFBN together to ensure that VREFAN = VREFBN.
67 REFOUT Internal Reference Voltage Output. The REFOUT output voltage is 2.048V. For internal reference operation, connect REFOUT directly to REFIN or use a resistive pider from REFOUT to set the voltage at REFIN. For external reference operation, REFOUT is not required and must be bypassed to GND with a >0.1µF capacitor.
68 REFIN Single-Ended Reference Analog Input. For internal reference and buffered external reference operation, apply a 0.7V to 2.3V DC reference voltage to REFIN. For unbuffered external reference operation, connect REFIN to GND. In this mode REF_P, REF_N, and COM_ are high impedance inputs that accept the external reference voltages.
- EP Exposed Paddle. EP is internally connected to GND.
Externally connect EP to GND to achieve specified dynamic performance.

一般性建议

原理设计建议(图2-5)

图2. MAX12557评估板模拟输入部分原理图
点击大图
图2. MAX12557评估板模拟输入部分原理图

图3. MAX12557评估板A通道数字输出原理图
点击大图
图3. MAX12557评估板A通道数字输出原理图

图4. MAX12557评估板B通道数字输出原理图
点击大图
图4. MAX12557评估板B通道数字输出原理图

图5. MAX12557评估板时钟电路
点击大图
图5. MAX12557评估板时钟电路

布局建议(关键元件的放置参见图6和图7)

图6. MAX12557评估板顶层丝印和元件布局
点击大图
图6. MAX12557评估板顶层丝印和元件布局

图7. MAX12557评估板底层丝印和元件布局
点击大图
图7. MAX12557评估板底层丝印和元件布局

结论

本应用笔记是器件手册和评估板资料的补充,如果用户遵循了这些建议,器件在目标应用中的性能将得以化。
  
上一篇:调谐MAX2607评估板获得高差分电压
下一篇:提高微波功率晶体管在使用中的可靠性

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料