1 引言
晶片直接键合技术就是把两片镜面抛光晶片经表面清洗和活化处理,在室温下直接贴合,再经过退火处理增加结合强度而成为一个整体的技术。该技术不需要任何粘合剂,两键合片的电阻率和导电类型可以自由选择,工艺简单,是制备复合材料及实现微机械加工的手段[1]。它往往与其他手段结合使用,既可对微结构进行支撑和保护,又可实现机械结构之间或机械结构与电路之间的电学连接[2]。
键合片在应用时,首先要求它必须具有良好的机械特性(空洞大小及分布和键合强度),它是键合片具有良好的电学特性的基础 [3]。键合界面没有空洞或空洞极少是制作可靠器件的原始要求。检测键合的方法有破坏性和非破坏性两大类,目前应用为普遍的描述键合机械特性的方法有图像法。横截面分析法和键合强度测试。图像法是一种非破坏性的方法,并且可用于在线实时监控;而后两种方法均为破坏性方法且需要控制模块。对于硅片键合,红外透射法、超声波法和X射线图像法为主要的三种图像法[4]。尽管红外透射法探测界面空洞的空间分辨率不及超声波法和X射线图像法,但红外方法具有简单、快速、价格便宜和易获得等优点,并且可以直接在净化间中使用获得
键合片退火前后的照片。而其他两种图像法尽管分辨率高,但价格昂贵、费时,且不与净化间兼容,无法实时监测键合过程。
本文主要讨论以晶片的红外透射原理为基础,利用图像处理技术,克服以往测试方法中高成本和技术复杂等缺点,实现以硅-硅直接键合为例,设计和搭建了红外检测装置及相关的软件模块,并同硅片键合装置结合,实现快速有效的在线键合工艺监控和晶片键合质量的初步评估。
2 红外检测原理
光波的近红外部分(波长约0.75~1.5 μm)可以透过晶片,不同的晶片对红外光的透射率不同。晶片可以透过的红外光的波长如表1所示。
如果在两块晶片的键合界面处存在未键合区域,就会使光线出现两次反射而形成相干光,经CCD拍摄,在图片上会出现干涉条纹。如果未键合区域面积较大且间隙高度不大,则会出现很多较大的干涉条纹。如果未键合区域很小,则红外图片上将出现较小的牛顿环;当键合界面处间隙较大时,红外光几乎无法透过,在图片上的对应位置将只能出现黑色图案。因此,根据键合片的红外透射图像,就可以成功检测到键合晶片的缺陷状态及分布等。但是,如果光的单色性不好,或者未键合区域的表面不是很规则的时候,也无法观测到牛顿环,此时只能在图片上观测到明暗对比的图案。
3 系统的设计
3.1 光源和CCD的选择
获得的图像质量直接影响图像处理程序的复杂度和检测结果。如果采用的光源单色性越好,越接近平行光,则图片的干涉条纹更清晰,质量更好。然而单色激光器或者平行光源体积大,而红外测试系统的一大特点就是结构简单、紧凑,而提供窄波段的照明价格比较昂贵,且不易控制,因此选用普通的白炽灯作为光源。为了得到较好的红外图片,在镜头的上方放置一块双面镜面抛光的硅片,从而过滤掉可见光对图片的影响。同时,选用超低照度黑白摄像机WAT-902H,它的光谱响应灵敏曲线如图1所示。而红外线波长为750 nm~1000μm,这样我们采用普通的光源就可以获得窄波段的红外图像。另外,由于该相机对红外波段的响应灵敏度不高,可以通过增加光强来克服,从而获得清晰的红外干涉图像,为后续的图像分析和处理做准备。
3.2 系统的组成
该测试系统的结构组成,由光源调节装置、光源、可变遮光光阑、测试台、放大镜头、黑白CCD摄像机、数据采集卡和计算机组成。
光源和CCD分别安装在测试样品的两边,相向安装。光源的高度可调,这是为了适应测试不同晶片的要求,从而获得清晰的红外图片。可变光阑放在键合片的下方,中间孔径在Φ1.8~50 mm任意可调,它控制照射到键合片上光斑的大小,一般调节可变光阑的内孔径同键合片大小,也可以调节到比键合片小,以检测键合片的局部特征。可变光阑优化光源的同时,简化了红外图片的背景,使得键合片以外的图像为单一黑色,降低了图像处理的复杂度,简化了系统软件。
光源通过可变光阑照射到键合片,光线透过键合片,通过镜头,在摄像机上成像,从而获得键合片的红外图像,通过数据采集卡送入计算机,经过图像处理程序的处理,显示测试结果。
3.3 系统软件模块
该仪器硬件测试部分与PC机相连,所获得的图片直接存放在PC机中,可以利用软件对图片进行处理,获得所需要的信息,同时提供图片显示和测试结果显示等功能。而使用一般通用的办公软件处理图片,如Photoshop等,需要理解键合的技术人员的参与,人为参与的因素过多,也将直接影响测试结果,且处理起来也很不方便。因此,我们利用Visual C++开发相应的软件模块,无需人员操作,可以方便快捷地处理图片,快速获取所需要的信息。目前主要处理模块流程。
3.3.1 光照补偿模块
上文中已经说明了终选择普通的白炽灯作为光源是为经济合适的,但同时也使得硅片表面的光照不均匀。同属于键合区域,而中间偏亮,四周偏暗,位于不同光照位置的键合区和未键合区的灰度值非常接近,这给图像的分割带来很大的困难。因此,加入光照补偿模块,成功地解决了光照不均的问题。光照补偿曲线由标定拟和的方式得到。
3.3.2 对比度增强模块
由于图片上键合区域和未键合区域的对比度不是很大,使得图像的分割困难,分析所得图片的灰度直方图,发现灰度值
集中在0~255的某一段区域,此处采用一种对比度增强算法,均匀地拉大各部分的差别,从而拉大图片上键合区域和未键合区域的差别,方便后续处理。该对比度增强算法不同于直方图均衡,它在算法上没有累积,其效果体现在直方图上,均等地拉开了各个灰度值之间的间距,而不改变灰度等级的个数和所对应的概率值。
3.3.3 图像平滑处理模块
获得图像的过程中,不可避免地会引入很多噪声,所以图像平滑是图像预处理不可缺少的部分。此处采用的图像平滑是基于梯度的算法,中和了均值滤波和中值滤波的双重效果,在抑制噪声的同时也模糊了干涉条纹,从而为后续的阈值分割奠定基础。该算法的实现:用3×3的邻域T[3][3],取中心点与其相邻的8个点的灰度值梯度,按阈值 T0将T[3][3]分成三个区域,邻域内各点的灰度值为其所属区域的灰度均值。用T[3][3]遍历整幅图像,图像各点的灰度值取该点累积的均值。
3.3.4 阈值分割模块
阈值分割是从整幅图像中提取目标对象的处理,在此处是为了提取出键合上的区域,为键合率的计算做准备。
3.3.5 键合率计算模块
在阈值分割后的二值图像上,计算出键合区域的面积,从而计算出键合率。键合率定义为晶片键合上的面积占整个预键合晶片面积的百分比。
4 系统的应用
4.1 在线监测键合过程
将红外检测应用到键合装置中,可以实时监控键合过程。(a)~(d)是截取的预键合过程中的4幅图片,可以清晰地观察键合波从中间向四周扩张的传播过程。所标的数字表示预键合时间(晶片经活化处理后,从两晶片开始接触到逐步键合所经历的时间)。1 min后,键合面积基本不再发生变化,预键合结果。
4.2 检测晶片键合质量
两组样品均采用单面抛光的p型标准晶片,经过清洗、活化等处理后,贴合到一起,再经过低温退火,形成稳定的键合,获得测试样件。将键合好的晶片放在该测试仪上检测,并进行相应图像处理得到样品1和2的红外图片所示。
,圆形区域是要键合的圆片,其中明区为键合上的地方,暗区为未键合上的地方,圆形区域(即键合圆片)以外为图像背景。从图上可以大致地看出空洞(未键合区域)的分布、个数和大小等。为了获得更为准确的数据信息,借助图像处理程序对图片(a)进行对比度增强、平滑、分割等一系列处理,从而得到键合率。样品1的键合率为28.12%,键合率很低,并且从中空洞的分布可以看出,样品1键合得很不好。样品2的键合率为66.12%。样品2的键合质量明显优于样品1,可以说明键合圆片越薄,越容易键合。可以从平板理论理解这一键合现象,圆片越薄,界面表面能克服圆片翘曲贴合到一起所需要的力越小。
可以看到具有清晰圆形干涉条纹的圆形暗区,这是因为在圆片贴合前,圆片此处有一颗粒污染。因此可以推测,界面上因颗粒污染所形成的空洞,红外图片上呈现为比较规则的圆形暗区。
5 结论
本文开发的晶片键合质量的红外检测系统具有成本低、实现原理和方法简单等优点。利用该检测仪,可以快速获得晶片的键合率和缺陷分布状况,从而实现晶片键合质量的快速评估。分析和比较了不同工艺条件下键合片的键合质量,包括键合率和空洞分布,结合键合强度等参数,可以有助于理解晶片键合的机理,从而指导键合工艺,优化工艺参数。
该检测仪更具有灵活性和实用性,不但可用于同质材料键合片的质量检测,还可用于异质材料键合片的检测,用于筛选适合下一步工艺研究的合适键合片等。同时,该检测仪结合到键合装置中,可以实时观测键合过程中键合的动态图像,观察键合波,实时指导键合工艺。但目前已实现的软件功能还很简单,只能进行键合质量的初步评估。要获得键合片的更多信息,需要添加软件功能,这是该系统的不足之处和值得改进的地方。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。