即使的MCU也具有少4个通用I/O端口以及比应用需求大得多的计算能力,因此可将该概念直接扩展至2个或更多输出,这种机制支持同时控制多个开关稳压器,从而使输出序列非常,另外,如果MCU带有片上比较器和电压基准,那么它们就能有效地实现欠压锁闭或执行跟踪,以确保两个输出以相同的斜率上升。
另一个为电源增加智能的相对简单的方法是利用MCU的内部振荡器(4MHz)。该振荡器可被用作开关稳压器的PWM生成器的时钟源,例如Microchip公司的高速PWM控制器MCP1630(图2)。
在这里例子中,MCU的时钟输出(通常除以4得到1MHz的参考时钟)接至PWM生成器的振荡输入,如果MCU带有片上PWM端口,它便能用作开关稳压器PWM的输入源,从而更好地控制占空比和频率。
MCU的内部振荡器通常是由温度补偿的RC电路,且一般在出厂时进行了初始默认校准,但设计工程师可利用MCU振荡器的校准寄存器(OSCAL),通过软件随时调节振荡器频率,该功能有助于满足FCC和其他管理机构强制规定的辐射要求。
利用简单的伪随机序列改变OSCAL设置,电源频率能在约600MHz到1.2MHz的范围内变化,若采用线性反馈移位寄存器,只需几行代码就能很容易地实现随机数生成器。这种广为人知的技术只需对8位MCU进行很少的编程工作,通过这种方式对内部振荡器进行失谐处理,电源的能量能在一个很宽范围内展开,从而将单一频率的发射能量降低20dB。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。