图1、集成PWM控制器的典型线路
图2是自激振荡式(RCC)充电器方案,特点是无专门的控制器来实现脉冲调制,变压器和电容电阻等元件决定了控制方式的可靠性。变压器次边线路与集成PWM控制器方案相同,故不再给出详细线路。
RCC方案看上去简单,但其实电性能不可靠,宽电压范围工作困难,失效率高,批量生产时的良率低。为了可靠起振,功率器件也必须选择价格较高的MOSFET。RCC方案看似简单其实很麻烦。
图2、RCC充电器的典型线路
分立PWM控制器方案也是被广泛应用于充电器中。传统的做法是分立的PWM控制器配MOSFET,特点是元件选择灵活、线路多种多样,性能良好,因而被很多人采用。AP3700充电器也属于分立PWM控制器方案,但该方案采用特殊的驱动方式,目的是用普通的NPN高压三极管取代了昂贵的MOSFET,降低了总成本。
AP3700充电器方案描述
AP3700采用BCD公司的CMOS工艺制成,是射极驱动方式的电流型PWM控制器,驱动普通的高压NPN三极管。该控制器只有三个引脚,即电源端VCC、脉冲输出端OUT和接地端GND,电压反馈输入和电源端VCC合用一只引脚,提高了集成度。抖频技术降低了系统EMI,使得不需要Y电容仍容易满足电磁兼容要求。跳频技术又降低了空载条件下的输入功率。
图3是AP3700的充电器方案。AP3700(U1)的脉冲输出脚直接驱动三极管Q1的发射极,电网上电后,U1的OUT脚首先从Q1的发射极获得能量,实现启动。C6、R7和C5是环路补偿元件,再配合恒压恒流元件U2实现对负载端电压和电流的稳定性调节。整体方案具有的性能,诸如待机功率、EMI、转换效率、动态特性等性能达到了高性能充电器的指标要求。另外,该方案的器件数量不多,三极管、电容电阻等价格便宜,因而这是一种较佳性价比的充电器方案。
表1、AP3700充电器方案的器件列表
图3、AP3700充电器方的原理图、PCB演示板和实物图
测试结果
这里以5V/1A充电器系统为例,介绍主要测试结果。
(1)空载输入功率低
轻载和空载时,控制器从正常的PWM方式自动切换到“Skip cycle”模式,见图4。在230V电网电压范围内空载输入功率小于0.15W,满足CEC标准规定的极限值0.3W,见图5。
图4、空载/230VAC时的PWM波形
图5、空载时的输入功率与线性电压
(2)电源转换效率高
电源能效标准很多很乱,非强制性的主要有美国的“能源之星”和欧洲的“蓝色天使”标准;更为苛刻的则是美国加州制定的强制性标准—CEC标准。它规定了电源平均效率必须满足公式0.5+0.09lnPo,而平均效率是0.25Po、0.5Po、0.75Po和Po条件下的加权值。越来越多的制造商都采纳CEC标准,提升产品的档次。
AP3700的启动电流和工作电流均很低,分别是0.22mA和0.45mA;电源端工作电压VCC低(3.65V~5.25V),因此启动电阻损耗和控制器损耗都很低,低于0.1W。充电器输出端的主要损耗是限流电阻R14产生的,电流采样端电压Vsense固定为0.2V,输出1A负载电流时损耗为0.2W。AP3700的系统方案很容易满足CEC标准,测试结果见图6。
(3)充电特性理想
图7给出了充电特性曲线,优点突出:(3.1) 满载-空载的负载调整率好,~0.5%; (3.2) 短路电流小,电流就是恒流充电电流;(3.3) 恒流范围宽,1.5V~5.05V。
图7、AP3700的充电特性曲线
(4)瞬态特性好
AP3700采用电流模式控制,且始终保持断续模式运行,这都使得输入-输出的传输函数简单,因而瞬态响应速度快、电压过冲小。图8是是负载动态特性,过冲电压350mV。
图8、AP3700的负载动态特性
(5)器件温度可靠
这里的操作完全是按照严格的测试程序,PCB板安装到标准的充电器外壳里,见图3。在外壳环境温度为40℃时进行老化实验,通过探头测试几个器件的表面温度,见表2。
表2、带标准外壳时的器件温度
可以看出,AP3700的表面温度低,功率器件APT13003和APD240的表面温度也在正常规范内。
不同方案比较
采用TO-92封装的AP3700方案,看上去没有集成PWM控制器解决方案或自激振荡RCC方案简洁,但AP3700方案决不是低端方案,相信上述测试结果已经给人一目了然的印象。下面再作详细对比,见表3。
表3、几种常见充电器方案的综合比较
可见,AP3700方案具有低价格、高性能和易生产等优点,能够增强其市场竞争力。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。