基于电源瞬时波动对微机的影响及防护

时间:2007-10-18
近年来,微机系统在工业自动化,生产过程控制,智能化仪器仪表等领域的应用越来越深入和广泛,有效地提高了工作效率,改善了工作条件。但是由于电磁环境的日趋恶劣和复杂,其工作的可靠性和安全性受到了严重威胁。常见也严重的一种干扰源就是市电电网频繁出现的瞬时掉电和下跌,他可使微机系统程序乱飞,控制失误,造成重大损失或伤亡事故。因此,研究电源瞬时波动对微机系统的影响,提高系统的电磁兼容性,有很高的实用价值。

  1 电源瞬时波动形成的原因及其对微机系统的影响

  1.1 电源瞬时波动形成的原因

  电源瞬时波动主要是指电网电压的瞬时下跌和瞬时停电。瞬时下跌是指电网电压幅值因某种原因在某一瞬间突然降低;瞬时停电是指电网电压在某一瞬问突然完全为零。

  电网电压瞬时波动的原因很多。例如,当电网遭到雷击或雷电感应时,可造成不小于0.1 s的瞬时停电,绝大多数情况可达0.3 s以上。电力输送线方面的事故也是产生电网电压瞬时波动的一个主要原因,90%的电力线事故会导致电网有5~8个周期的瞬时停电[1]。工业现场的大功率设备启动运行时形成相当大的冲击电流,该电流是正常工作电流的10~40倍,他可以引起局部电网电压的瞬时波动,有的大功率电机启动时,会导致附近电网电压瞬时下跌20%,持续30个周期之久[2]。

  1.2 电源瞬时波动对微机系统的影响

  电网电压的瞬时波动可直接导致系统内部电源电压的瞬时下跌,对微机系统的工作造成严重干扰,主要表现在以下几个方面[3]:

  使数据采集误差加大;引入虚假状态信号,使控制状态失灵;破坏RAM存储器的数据;改变PC值,使程序运行失常。

  2 对电源瞬时波动干扰的防护

  2.1采用快速交流稳压器

  采用快速交流稳压器可输出稳定的220 V交流电,从而消除电网电压瞬时波动对微机系统工作的影响。

  2.2 采用不间断电源UPS

  不间断电源UPS能够在电源停电或下跌时,由内部逆变电源给微机供电,他能有效地防止电网的瞬时停电或电网电压的瞬时跌落。在要求较高的微机系统中,UPS是必不可少的设备。

  2.3 加大系统内部整流电路的平滑电容和采用后备电源

  增大整流电路的平滑电容,在一定程度上可消除电网电压瞬时波动的影响。当平滑电容为470μF时,可承受O.5个周期20%下跌幅度的瞬时波动;当电容为4 700μF时,可抵抗6.5个周期100%下跌幅度的瞬时波动。

  对持续时间较长的波动,只靠增大电容是不行的,这时应考虑用辅助电源。采用浮动充电方式的辅助电源的配置如图1所示。正常工作时,整流电路输出的脉动直流电源经R给电池E充电;当瞬时波动发生时,电池经二极管给系统供电,大大提高了系统抗电源波动干扰的能力。不仅如此,由于电池相当于一个性能良好的旁路电容,他对10 kHz~1 MHz频率成份的噪声衰减有显著效果。

浮动充电方式电路

  
       2.4 利用系统本身功能消除电源瞬时波动的影响

  由于交流稳压器和UPS的造价高,配置麻烦,要求不高的微机系统一般不采用上述措施,而是利用系统本身功能,采取预先检测手段,在瞬时波动还没有影响到系统工作时,使其迅速回到开机时的初始状态。

  一般微机系统都有一个开机自动复位电路,他利用一个RC充电电路,使复位电平的建立迟于电源的建立,从而避免开机时CPU的工作混乱。

  当电源瞬时停电时,+5 V供电因停电而很快下降,电容C通过VD放电。自动复位电路及瞬时停电时电容C的电压波形如图2所示[4]。当电容C上的电压下降到低于4.75 V后,由于仍高于复位阈值电压,并不能使CPU复位,这时RAM中数据将遭到破坏。因此,只依靠简单的RC复位电路不能解决电源瞬时波动所带来的问题。

微机自动复位电路及时序图

  
       解决这种问题的方法是增加瞬时停电检测电路。图3是一个微机系统的复位信号输入电路及时序图。当Uc低于电压检测值时,8211输出为低,使CPU的READ-Y和CE2为低,CPU停止工作,RAM与数据总线隔开。1 ms后,复位信号变低,使系统复位。电源复位后,8211输出为高,再过100 ms复位信号变为高电平,这样可使CPU避开电源电压刚升至4.75 V后的不稳定工作区,复位信号为高后1 ms,READY和CE2变高,CPU开始正常工作。

8085微型计算机瞬时停电处理及时序图

       更完善的措施是,不仅保护RAM内容,而且还进行人栈操作,然后再让CPU停止工作。当电源恢复时,再从堆栈中取出数据,使程序继续进行下去,而不是重新开始。图4是某微机处理电源瞬时停电的各种信号时序图。电源瞬时停电时,停电信号PD为低,触发单稳电路产生一个负脉冲送至CPU的NMI端,CPU响应中断,自动产生RST指令,把PC中下一条要执行指令的16位地址送入堆栈保存,同时在NMI变低后6 ms产生禁止存储器工作的MS信号。当电源恢复后80 ms,MS信号变高,复位信号变高,系统再次启动。该方案还可以忽略电源恢复后100 ms内电源的再次波动。

 

瞬时停电检测及处理时序图

  但是实际的停电情况相当复杂,并不是单纯的性停电,而是象振荡一样,重复好几次。当次停电恢复后,MS信号变高,其后,RESET信号也变高。在系统刚要启动时,第二次停电又产生了,NMI再次变低,如图5所示。这时的中断申请等于被忽视,因为他并不能做出停电处理,将数据进行入栈操作,而且,因MS信号已变高,在第二次停电发生6 ms内存储器也不能被禁止。在此期间系统却发生了再启动,CPU将次停电时人栈的数据从堆栈中取出,开始停电前的程序作业。而在第二次停电恢复正常时也同样从堆栈中取出数据。由于忽视了NMI信号,少了入栈动作,所以整个程序就乱了。解决这个问题的办法 是,保证在停电信号后6 ms内CPU不进行任何处理。这样即使再有停电情况发生也不会进行栈操作,再启动时,取出的就是次停电时的入栈数据。
 
 

 

连续瞬时停电时的时序图

  
       为确保RAM数据不遭破坏,建议使用非易失性RAM(NVRAM)及E2PROM等专用存储器。另一种方法是在计算机内部加装专给RAM供电的后备电源,RAM采用CMOS静态读写存储器,这种存储器在断电时只需2.0 V电源就可以维护信息不被丢失。

RAM掉电保护电路

  
       图6是RAM掉电保护的电路的实例。当电源电压下降到4.5 V时,4046的开关断开,RAM的片选信号上拉至"1",RAM中的数据不被冲失;当电源继续下降至3.6 V时,由蓄电池给RAM供电。

  3 结 语

  实践表明,上述抑制电源瞬时波动的措施非常有效,特别是在不用交流稳压器和UPS的情况下,只利用系统本身功能消除电源波动干扰的方法得到了广泛应用,大大提高了微机系统的抗干扰能力。 (侯民胜 问建)


  
上一篇:如何在移动终端中实现PoC服务功能
下一篇:热继电器故障分析及处理

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料