实时数字信号处理、超大规模集成电路技术的飞速发展,不断地推动着数字信号处理器性能的提高,使其在信号处理、军事及民用电子技术领域发挥着越来越重要的作用,其应用广度和深度也在不断地扩展和深化。数字信号处理相对于模拟信号处理有很大的优越性,主要表现在高、灵活性强、可靠性好、易于大规模集成及存储等方面,而且可以采用多种性能优良的数字信号处理方法和算法。实时数字信号处理技术的和标志是数字信号处理器。快速傅里叶变换等实用算法的提出,促进了实现数字信号处理的发展。数字信号处理在于运算处理的实时性。
电能表作为电能的计量工具,多年来一直倍受国家电力部门的重视,电能表生产企业更是不遗余力地致力于设计与开发,但目前我国电能表设计水平仍比较落后,高电能表主要依靠进口,传统的4位、8位单片机因为自身性能的局限,在 高电能计量方面难免捉襟见肘,而DSP技术在电能表中的应用为电能计量的大幅度提高带来了新的希望。
DSP在电能表中的应用
根据电能表的功能和误差的需求,我们选用了TI公司的TMS320VC5402芯片,在程序设计上除了完成快速数据处理工作以外,还针对系统非线性失真进行了修正和补偿。
采集数据处理与计算
在实际应用中,电力信号通过互感器采集到电能表中,通过一个6通道16位模拟输入前端处理器(AD73360)进行(A/D)模数转换,变成数字信号并传输到DSP中,然后对采样的数据进行数字滤波。在DSP中应用采样技术需要快速ADC,即以非常快的速度来采样模拟信号,并且需要快速DSP来执行数字低通滤波和抽取。在数字信号处理中,滤波占极其重要的作用,它解决了模拟滤波器无法克服的电压漂移、温度漂移和噪声等问题,从而改善了数字信号的跳动,使得电压电流信号的波形趋于理想状态。
在采样过程中,首要的问题是采样频率的选择,Nyquist采样定理指出:若连续信号x(t)是有限带宽的,其频谱的频率为fc,对x(t)采样时,若保证采样频率fs≥2fc,那么,就可由采样信号恢复出x(t)。在实际对x(t)作采样时,首先要了解x(t)的截止频率fc,以确定应选取的采样频率fs。若x(t)不是有限带宽的,在采样前应使用抗混叠(anti-aliasing)滤波器对x(t)作模拟滤波,以去掉f>fc的高频成分。因此,在A/D转换前就需要模拟低通滤波器具有尖锐的滚降特性,来限制模拟信号的频谱。一个理想的滤波器应能让所有低于fs/2的频率通过,而完全阻隔掉所有大于fs/2的频率。通常,滤波器和采样频率的选择是将我们感兴趣的频带限制在DC和fs/2之间。
首先对电压电流输入信号进行数据采样和RC滤波网络滤波,然后进行A/D转换。A/D转换完成后产生中断,在中断服务子程序中读出每次转换的结果,作为数字低通滤波的输入。DSP的输入是A/D转换后得到的数字信号,DSP对输入的数字信号进行处理,并经过一定的计算和转换得到相应的能量。在DSP处理器中是按以下式进行运算的:
* 电压测量(有效值)计算式:
式中:U-电压有效值,n-每周期采样点数,-电压采样值。
* 电流测量(有效值)计算式
式中:I-电流有效值,n-每周期采样点数,-电流采样值。
* 单元件有功功率计算式
式中: P-单元件有功功率,n-每周期采样点数,-元件上电压采样值,-元件上电流采样值。
* 单元件无功功率计算式
式中:Q-单元件无功功率,n-每周期采样点数,-元件上电压采样值,-元件上电流采样值(移相后)。
* 三相四线三元件有功功率计算式:
式中:-三相有功功率,-(i=A,B,C)各相有功功率。
*三相四线三元件有功功率计算式:
式中:-三相无功功率,-(i=A,B,C)各相无功功率。
数字滤波的设计
数字滤波器运算结构的不同,将会影响系统运算的、误差、速度和经济性等性能指标。在一般情况下,都要求使用尽可能少的常数乘法器和延迟器来实现系统,并要求运算误差尽可能小。我们主要采用FIR结构的滑动平均滤波器(MovingAverage Filter)。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。