数字水印

  数字水印(Digital Watermarking)是指嵌入数字载体(包括多媒体、文档、软件等)中的数字信号,它可以是图像、文字、符号、数字等所有可以作为标识的信息。数字水印既不影响原始载体的正常使用及存在价值,也不容易被人感知。

分类

  1.按特性划分

  按水印的特性可以将数字水印分为鲁棒数字水印和脆弱数字水印两类。鲁棒数字水印主要用于在数字作品中标识着作权信息,如作者、作品序号等,它要求嵌入的水印能够经受各种常用的编辑处理;脆弱数字水印主要用于完整性保护,与鲁棒水印的要求相反,脆弱水印必须对信号的改动很敏感,人们根据脆弱水印的状态就可以判断数据是否被篡改过。

  2.按水印所附载的媒体划分

  按水印所附载的媒体,我们可以将数字水印划分为图像水印、音频水印、视频水印、文本水印以及用于三维网格模型的网格水印等。随着数字技术的发展,会有更多种类的数字媒体出现,同时也会产生相应的水印技术。

  3.按检测过程划分

  按水印的检测过程可以将数字水印划分为明文水印和盲水印。明文水印在检测过程中需要原始数据,而盲水印的检测只需要密钥,不需要原始数据。一般来说,明文水印的鲁棒性比较强,但其应用受到存储成本的限制。目前学术界研究的数字水印大多数是盲水印。

  4.按内容划分

  按数字水印的内容可以将水印划分为有意义水印和无意义水印。有意义水印是指水印本身也是某个数字图像(如商标图像)或数字音频片段的编码;无意义水印则只对应于一个序列号。有意义水印的优势在于,如果由于受到攻击或其他原因致使解码后的水印破损,人们仍然可以通过视觉观察确认是否有水印。但对于无意义水印来说,如果解码后的水印序列有若干码元错误,则只能通过统计决策来确定信号中是否含有水印。

  5.按用途划分

  不同的应用需求造就了不同的水印技术。按水印的用途,我们可以将数字水印划分为票据防伪水印、版权保护水印、篡改提示水印和隐蔽标识水印。

  票据防伪水印是一类比较特殊的水印,主要用于打印票据和电子票据的防伪。一般来说,伪币的制造者不可能对票据图像进行过多的修改,所以,诸如尺度变换等信号编辑操作是不用考虑的。但另一方面,人们必须考虑票据破损、图案模糊等情形,而且考虑到快速检测的要求,用于票据防伪的数字水印算法不能太复杂。

  版权标识水印是目前研究最多的一类数字水印。数字作品既是商品又是知识作品,这种双重性决定了版权标识水印主要强调隐蔽性和鲁棒性,而对数据量的要求相对较小。

  篡改提示水印是一种脆弱水印,其目的是标识宿主信号的完整性和真实性。

  隐蔽标识水印的目的是将保密数据的重要标注隐藏起来,限制非法用户对保密数据的使用。

  6.按水印隐藏的位置划分

  按数字水印的隐藏位置,我们可以将其划分为时(空)域数字水印、频域数字水印、时/频域数字水印和时间/尺度域数字水印。

  时(空)域数字水印是直接在信号空间上叠加水印信息,而频域数字水印、时/频域数字水印和时间/尺度域数字水印则分别是在DCT变换域、时/ 频变换域和小波变换域上隐藏水印。

  随着数字水印技术的发展,各种水印算法层出不穷,水印的隐藏位置也不再局限于上述四种。应该说,只要构成一种信号变换,就有可能在其变换空间上隐藏水印。

原理

  数字水印是通过一定的算法将一些标志性信息直接嵌入到多媒体内容当中,但不影响原内容的价值和使用,并且不能被人的知觉系统觉察或注意到,只有通过专用的检测器或阅读器才能提取。其中的水印信息可以是作者的序列号、公司标志、有特殊意义的文本等,可用来识别文件、图像或音乐制品的来源、版本、原作者、拥有者、发行人、合法使用人对数字产品的拥有权。与加密技术不同,数字水印技术并不能阻止盗版活动的发生,但它可以判别对象是否受到保护,监视被保护数据的传播、真伪鉴别和非法拷贝、解决版权纠纷并为法庭提供证据。

特点

  不可见性:数字水印作为标识信息隐藏于数字作品中,对拦截者而言,应不可见。

  安全性:数字水印应当具备难以篡改或伪造的要求,并应当具有较低的误检测率和较强的抵抗性。

  鲁棒性:在经过多种信号处理过程后,数字水印仍能保持部分完整性及检测的准确性。

  脆弱性:能直接反映出水印是否遭受篡改等。

缺点

  (1)设计对水印系统进行公正的比较和评价方法,在这方面已经有部分学者有了一些初步的研究;但缺乏普遍性和原理性,水印系统的脆弱之处无法进行全面测试与衡量;

  (2)从现实的角度看,水印系统必然要在算法的鲁棒性、水印的嵌入信息量以及不可觉察性之间达到一个平衡,这涉及鲁棒性算法的原理性设计、水印的构造模型、水印能量和容量的理论估计、水印嵌入算法和检测算法的理论研究等方面。如何确定平衡点仍是一个难题,目前大多数水印算法均利用经验而不是从理论上解决此问题;

  (3)如何将水印技术与现行国际图像及视频压缩标准(如JPEG2000和MPEG-4)相结合,以及如何将水印技术应用于DVD工业标准中;

  (4)所有权的证明问题还没有完全解决,就目前已经出现的很多算法而言,攻击者完全可以破坏掉图像中的水印,或复制出一个理论上存在的“原始图像”,这导致文件所有者不能令人信服地提供版权归属的有效证据。因此一个好的水印算法应该能够提供完全没有争议的版权证明,在这方面还需要做很多工作。目前将水印作为版权保护的法律证据还不可能;

  (5)声频和视频水印的解决方案还不完善,大多数的视频水印算法实际上是将其图像水印的结果直接应用与视频领域中,而没有考虑视频应用中大数据量以及近乎实时的特性。从今后的发展上看,水印在包括DVD等数字产品在内的视频和音频领域将有极为广阔的应用前景。因此如何设计成熟的、合乎国际规范的水印算法仍然悬而未决;

  (6)现有水印算法中在原理上有许多雷同之处,但目前国内外的工作尚未能对这些有内在联系的不同算法中的共性问题进行高度提炼和深入的理论研究,因而缺乏对数字水印作进一步研究具有指导意义的理论结果。

算法

  1、空域算法:该类算法中典型的水印算法是将信息嵌入到随机选择的图像点中最不重要的像素位 (LSB:least significant bits)上 ,这可保证嵌入的水印是不可见的。但是由于使用了图像不重要的像素位 ,算法的鲁棒性差 ,水印信息很容易为滤波、图像量化、几何变形的操作破坏。另外一个常用方法是利用像素的统计特征将信息嵌入像素的亮度值中。Patchwork算法方法是随机选择N对像素点 (ai,bi) ,然后将每个ai点的亮度值加 1 ,每个bi点的亮度值减 1,这样整个图像的平均亮度保持不变。适当地调整参数,Patchwork方法对JPEG压缩、FIR滤波以及图像裁剪有一定的抵抗力,但该方法嵌入的信息量有限。为了嵌入更多的水印信息,可以将图像分块,然后对每一个图像块进行嵌入操作。

  2、变换域算法:该类算法中,大部分水印算法采用了扩展频谱通信(spread spectrum communication)技术。算法实现过程为:先计算图像的离散余弦变换 (DCT),然后将水印叠加到DCT域中幅值的前k系数上(不包括直流分量),通常为图像的低频分量。若DCT系数的前k个分量表示为D={ di },i=1 ,… ,k,水印是服从高斯分布的随机实数序列W ={ wi },i=1 ,… ,k,那么水印的嵌入算法为di = di(1 + awi),其中常数a为尺度因子 ,控制水印添加的强度。然后用新的系数做反变换得到水印图像I。解码函数则分别计算原始图像I和水印图像I*的离散余弦变换 ,并提取嵌入的水印W*,再做相关检验以确定水印的存在与否。该方法即使当水印图像经过一些通用的几何变形和信号处理操作而产生比较明显的变形后仍然能够提取出一个可信赖的水印拷贝。一个简单改进是不将水印嵌入到DCT域的低频分量上,而是嵌入到中频分量上以调节水印的顽健性与不可见性之间的矛盾。另外,还可以将数字图象的空间域数据通过离散傅里叶变换(DFT)或离散小波变换(DWT)转化为相应的频域系数;其次,根据待隐藏的信息类型,对其进行适当编码或变形;再次,根据隐藏信息量的大小和其相应的安全目标,选择某些类型的频域系数序列(如高频或中频或低频);再次,确定某种规则或算法,用待隐藏的信息的相应数据去修改前面选定的频域系数序列;,将数字图象的频域系数经相应的反变换转化为空间域数据。该类算法的隐藏和提取信息操作复杂,隐藏信息量不能很大,但抗攻击能力强,很适合于数字作品版权保护的数字水印技术中。

  3、压缩域算法:基于JPEG、MPEG标准的压缩域数字水印系统不仅节省了大量的完全解码和重新编码过程,而且在数字电视广播及VOD(Video on Demand)中有很大的实用价值。相应地,水印检测与提取也可直接在压缩域数据中进行。下面介绍一种针对MPEG-2压缩视频数据流的数字水印方案。虽然MPEG-2数据流语法允许把用户数据加到数据流中,但是这种方案并不适合数字水印技术,因为用户数据可以简单地从数据流中去掉,同时,在MPEG-2编码视频数据流中增加用户数据会加大位率,使之不适于固定带宽的应用,所以关键是如何把水印信号加到数据信号中,即加入到表示视频帧的数据流中。对于输入的MPEG-2数据流而言,它可分为数据头信息、运动向量(用于运动补偿)和DCT编码信号块3部分,在方案中只有MPEG-2数据流一部分数据被改变,其原理是,首先对DCT编码数据块中每一输入的Huffman码进行解码和逆量化,以得到当前数据块的一个DCT系数;其次,把相应水印信号块的变换系数与之相加,从而得到水印叠加的DCT系数,再重新进行量化和Huffman编码,对新的Huffman码字的位数n1与原来的无水印系数的码字n0进行比较,只在n1不大于n0的时候,才能传输水印码字,否则传输原码字,这就保证了不增加视频数据流位率。该方法有一个问题值得考虑,即水印信号的引入是一种引起降质的误差信号,而基于运动补偿的编码方案会将一个误差扩散和累积起来,为解决此问题,该算法采取了漂移补偿的方案来抵消因水印信号的引入所引起的视觉变形。

  4、NEC算法:该算法由NEC实验室的Cox等人提出,该算法在数字水印算法中占有重要地位,其实现方法是,首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0,1)分布,密钥一般由作者的标识码和图象的哈希值组成,其次对图象做DCT变换,用伪随机高斯序列来调制(叠加)该图象除直流(DC)分量外的1000个的DCT系数。该算法具有较强的鲁棒性、安全性、透明性等。由于采用特殊的密钥,因此可防止IBM攻击,而且该算法还提出了增强水印鲁棒性和抗攻击算法的重要原则,即水印信号应该嵌入源数据中对人感觉最重要的部分,这种水印信号由独立同分布随机实数序列构成,且该实数序列应该具有高斯分布N(0,1)的特征。

  5、生理模型算法:人的生理模型包括人类视觉系统HVS(HumanVisualSystem)和人类听觉系统HAS。该模型不仅被多媒体数据压缩系统利用,同样可以供数字水印系统利用。利用视觉模型的基本思想均是利用从视觉模型导出的JND(Just Noticeable Difference)描述来确定在图象的各个部分所能容忍的数字水印信号的强度,从而能避免破坏视觉质量。也就是说,利用视觉模型来确定与图象相关的调制掩模,然后再利用其来插入水印。这一方法同时具有好的透明性和强健性。

应用领域

  1、版权保护:即数字作品的所有者可用密钥产生一个水印,并将其嵌入原始数据,然后公开发布他的水印版本作品。当该作品被盗版或出现版权纠纷时,所有者即可利用图3或图4的方法从盗版作品或水印版作品中获取水印信号作为依据,从而保护所有者的权益。

  2、加指纹:为避免未经授权的拷贝制作和发行,出品人可以将不同用户的ID或序列号作为不同的水印(指纹)嵌入作品的合法拷贝中。一旦发现未经授权的拷贝,就可以根据此拷贝所恢复出的指纹来确定它的来源。

  3、标题与注释:即将作品的标题、注释等内容(如,一幅照片的拍摄时间和地点等)以水印形式嵌入该作品中,这种隐式注释不需要额外的带宽,且不易丢失。

  4、篡改提示:当数字作品被用于法庭、医学、新闻及商业时,常需确定它们的内容是否被修改、伪造或特殊处理过。为实现该目的,通常可将原始图象分成多个独立块,再将每个块加入不同的水印。同时可通过检测每个数据块中的水印信号,来确定作品的完整性。与其他水印不同的是,这类水印必须是脆弱的,并且检测水印信号时,不需要原始数据。

  5、使用控制:这种应用的一个典型的例子是DVD防拷贝系统,即将水印信息加入DVD数据中,这样DVD播放机即可通过检测DVD数据中的水印信息而判断其合法性和可拷贝性。从而保护制造商的商业利益。

相关百科