混频二极管是一种肖特基势垒二极管,与一般二极管相比,由于利用多数载流子工作,没有少数载流子储存效应,所以具有频率高、噪声低和反向电流小等特点,主要用于混频器。
混频二极管是利用金属和N型半导体相接触所形成的金属半导体结的原理而制成的。当金属与半导体相接触时,它们的交界面处会形成阻碍电子通过的肖特基势垒,即表面势垒。为了使半导体中的载流子容易地越过势垒进入金属,它必须采用电子逸出功(电子跑出半导体或金属表面所需的能量)比金属大得多的N型半导体。当二极管加上正向偏压时,势垒下降,多数载流子(电子)便从半导体进入金属。
1、正向特性
这里以日立公司的1SS86/1SS87为例说明。它们的正向特性由图1所示,当正向电流IF为1mA时,1SS86的正向压降VF≤0.2V,1SS87的VF≤0.45V;当IF为10mA时,1SS86的VF=0.4V,1SS87的VF=0.6V。另外,从表1中可知,国外混频二极管的正向特性越做越好,主要表现在正向特性的一致性更好,有类似于变容管的配对特性,如在IF=10mA下,1SS165的VF=520mV~600mV±5mV;HSM88S/SR与HSM88AS/ASR的VF分别为520mV~600mV±10mV和500mV~580mV±10mV,表明VF的偏差只有5mV~10mV。
2、反向特性
它们的反向特性由图2所示。混频二极管的反向漏电流较小,如在VR=2V下,1SS86的IR为20μA,1SS87的IR为1μA;在VR=4V下,1SS86的IR为70μA,1SS87的IR为4μA,表明1SS87的反向特性比1SS86好。混频器要求混频二极管的反向漏电流小,这样,混频器的噪声系数也小。
3、结电容
它们的结电容与反向电压的关系由图3所示。当VR=0V时,1SS86/1SS87的结电容C都小于0.85pF;在VR=1V时,它们的电容C都小于0.7pF。由于混频二极管的结电容较小,所以混频器的频率较高。另外,从表1可知,国外混频二极管的结电容的偏差也越来越小,如在VR=0V时,1SS88/1SS165/1SS166的电容偏差ΔC均为±0.05pF;HSM88S/SR、HSM88AS/ASR和HSM88WA/WK的ΔC均为±0.1pF。
所谓二极管混频器就是混频器中的非线性器件采取混频二极管的混频器,它的电原理图如图5所示。图5中L1C1为输入信号回路,调谐于输入信号频率fS;L2C2为输出中频回路,调谐于中频频率fi。输出中频回路直接与混频二极管D、信号输入电压μS、本振电压μO和偏置电源EO串联在一起,输出中频电压μi全部反作用到混频二极管上。这种二极管混频器具有电路简单、噪声小和工作频率高等特点,但混频电压增益较低。这种电路在大信号混频中使用时,混频二极管在开关状态工作,它能获得较大的动态范围,所以在微波电路中较广泛地应用。若采用单个器件组成的混频器,其非线性和动态范围都不太理想。现在,彩电电调谐器大多采用两个或多个器件组成的平衡混频器和差分对混频器等,以提高混频器的性能。