智能仪表

  微电子技术和计算机技术的不断发展,引起了仪表结构的根本性变革,以微型计算机(单片机)为主体,将计算机技术和检测技术有机结合,组成新一代“智能化仪表”,在测量过程自动化、测量数据处理及功能多样化方面与传统仪表的常规测量电路相比较,取得了巨大进展。智能仪表不仅能解决传统仪表不易或不能解决的问题,还能简化仪表电路,提高仪表的可靠性,更容易实现高精度、高性能、多功能的目的。随着科学技术的进一步发展,仪表的智能化程度将越来越高,例如深圳科立恒公司的智能仪表,不但能完成多种物理量的精确显示,同时可以带变送输出、继电器控制输出、通讯、数据保持等多种功能。

  智能仪表和智能传感器一般是用在现场总线系统中,这种仪表和传感器内部嵌入的有通讯模块和控制模块,可以完成数据采集,数据处理和数据通讯功能,说白了就是在普通的仪表和传感器上加了个单片机。

产品特点

  1、测量不受流体密度、粘度、温度、压力和电导率变化的影响;

  2、测量管内无阻碍流动部件,无压损,直管段要求较低;

  3、系列公称通径DN15~DN3000。传感器衬里和电极材料有多种选择;

  4、转换器采用新颖励磁方式,功耗低、零点稳定、精确度高。流量范围度可达1500:1;

  5、转换器可与传感器组成一体型或分离型;

  6、转换器采用16位高性能微处理器,2x16LCD显示,参数设定方便,编程可靠;

  7、流量计为双向测量系统,内装三个积算器:正向总量、反向总量及差值总量;可显示.庄、反流量,并具有多种输出:电流、脉冲、数字通讯、HART;

  8、转换器采用表面安装技术SMT,具有自检和自诊断功能;

CAN接口设计

  1 前言

  在计算机数据传输领域内,长期以来使用RS-232通信标准,尽管它们被广泛的使用,但却是一种低数据速率和点对点的数据传输标准,无能力支持更高层次的计算机之间的功能操作。同时,在复杂或大规模应用中(如工业现场控制或生产自动化领域),需要使用大量的传感器、执行器和控制器等,它们通常分布在非常广的范围内,所以,在层上的确需要设计出一种造价低廉而又能经受工业现场环境的通信系统,现场总线(Field Bus)在这种背景下产生了。

  现场总线是连接智能现场设备和自动化系统的数字式、双向传输、多分支结构的通信网络。其拓扑结构如图一。现场总线技术自70年代诞生至今,由于它在减少系统线缆,简化系统安装、维护和管理,降低系统的投资和运行成本,增强系统性能等方面的优越性,引起人们的广泛注意,得到大范围的推。

智能仪表拓扑结构图

  CAN是一种有效支持分布式控制或实时控制的串行通信网络,最初是由德国BOSCH公司为汽车监测、控制系统而设计的。由于CAN总线本身的特点,其应用范围目前己不再局限于汽车行业,而向过程工业、机械工业、纺织机械、农用机械、机器人、数控机床、医疗器械、传感器及智能仪表等领域发展。

  智能仪表是自动化学科的重要组成部分。随着科学技术的迅速发展,尤其是微电子、计算机和通信技术日新月异的变化,智能仪表向着数字化、网络化和智能化方向发展,智能仪表一方面可以进行人机对话及与外部仪器设备对话,通过现场总线接连入自动测试系统。另一方面,使用者借助面板上的键盘和显示屏,可用对话方式选择测量功能、设置参数。当然,通过总线中的工业计算机也可获得测量节点的数据。

  2  CAN的接口设计

  CAN总线是一种串行数据通信协议,在CAN总线通信接口中集成了CAN协议的物理层和数据链路层功能,可以完成对通信数据成帧处理。CAN总线接口的具体的电路设计如图1所示。

  笔者用SJA1000作为流量计的CAN控制器,与CPU(单片机)的I/O口直接相连,再通过PCA82C250组成CAN总线。这种结构很容易实现CAN网络节点中的信息收发,从而实现对现场的控制。

  SJA1000的AD0~AD7连接到MSP420F149的P0口,INT接到P1.0,/CS接到P1.1,/RD连接到P1.2,/WR连到P1.3,ALE连到P1.4,SJA1000的RX0与TX0分别通过两个高速光耦CNW137与PCA82C250相连后,连到CAN总线上。

  PCA82C250为CAN总线收发器,是CAN控制器与CAN总线的接口器件,对CAN总线差分方式发送,其RS引脚用于选择PCA82C250的工作方式:高速方式、斜率方式。RS接地为高速,RS引脚串接一个电阻后再接地,用于控制上升和下降斜率,从而减小射频干扰。RS引脚接高电平,PCA82C250处于等待状态。此时,发送器关闭,接收器处于低电流工作,可以对CAN总线上的显性位做出反应,通知CPU。实验数据表明15~200K为较理想的取值范围,在这种情况下,可以使用平行线或双绞线作总线,本文中PCA82C250的斜率电阻为取30K。

  CNW137为高速光耦,速度为10Mbps,用于保护CAN总控制器SJA1000。CAN总线的终端匹配电阻起相当重要的作用,不合适的电阻会使数据通信的抗干扰性及可靠性大大降低,甚至无法通信,范围为108~132Ω,本文使用的电阻为124Ω。

  2.1 SJA1000的功能

  CAN通信协议主要由CAN控制器完成。SJA1000是适用于汽车和一般工业环境控制器局域网(CAN)的高集成度独立控制器,具有完成高性能通信协议所要求的全部必要特性,具有简单总线连接的SJA1000可完成物理层和数据链路层的所有功能,应用层功能可由微控制器完成,SJA1000为其提供了一个多用途的接口。

  SJA1000是一个独立的CAN控制器,它是Philips公司另一个CAN控制器PCA82C200的后继产品,在软件和引脚上均与PCA82C200兼容。但它不仅仅是PCA82C200的一个简单替代产品,它增加了许多新的功能,使得其性能更佳,尤其适用于对系统优化、诊断和维护要求比较高的场合。

  SJA1000的功能框图如图2所示,由以下几部分构成:接口管理逻辑;发送缓冲器,能够存储1个完整的报文(扩展的或标准的);验收滤波器;接收FIFO;CAN核心模块。

功能框图

  2.2 82C250

  SJA1000的一端与单片机相连,另一端与CAN总线相连。但是,为了提高单片机对CAN总线的驱动能力,可以把82C250作为CAN控制器和物理总线间的接口,以提供对总线的差动发送能力和对CAN控制器的差动接收能力。82C250的主要特性如下:

  ·与ISO/DIS11898标准兼容;

  ·高速(可达1 Mb/s );

  ·具有抗汽车环境下的瞬间干扰和保护总线能力;

  ·降低射频干扰的斜率控制 ;

  ·热保护;

  ·防护电池与地之间发生短路 ;

  ·低电流待机方式;

  ·某个节点掉电不会影响总线 ;

  ·可有110个节点相连接。

  3  CAN通信程序框图

  SJA1000操作期间,在上电之前必须配置控制线路(中断、复位、片选等)用于建立与CAN控制器之间进行通信的硬件连接。初始化、CAN通信采用中断方式数据发送和接收子程序,其流程如图3、图4和图5所示。

流程

  如果在上电后独立CAN控制器在引脚17得到1个复位脉冲(低电平),它能够进入复位模式。在对SJA1000寄存器设置前,CAN控制器通过读复位模式/请求标志来检查是否已达到复位模式,因为要配置信息的寄存器仅在复位模式才能写入,涉及对控制寄存器(CR),验收码寄存器(ACR ),验收屏蔽寄存器(AMR ),总线定时寄存器(BTRO和BTR1)和输出控制寄存器(OCR)的初始化编程。

  时钟分频寄存器,可以选择BasicCAN或PeliCAN工作模式,设置CLKOUT管脚使能用来选择频率,设置是否使用旁路CAN输入比较器和是否使用TX 1输出被用作专门的接收中断输出。

  验收代码和验收屏蔽寄存器的设置可以过滤信息,为收到的信息定义验收代码为和验收代码相关位比较定义验收屏蔽代码。

  总线定时寄存器,定义总线上的位速率。输出控制寄存器定义CAN总线输出管脚TX0和TX1的输出模式,定义TX0和TX1输出管脚配置是悬空、下拉、上拉或推挽以及极性。中断寄存器设置允许识别的中断源。

  4  结论

  多个智能仪表与通过CAN接口与PC联系成总线网,系统运行良好。这种基于现场总线的智能仪表系统抗干扰性强、性能可靠,无论是测量速度、精确度、自动化程序还是性价比都是传统仪表不能比拟的,是今后仪器仪表发展的方向。

优势和特点

  智能仪表在工业自动化领域的广泛应用得益于其突出的技术优势和特点,诸如其高稳定性、高可靠性、高精度、易维护性。以智能变送器为例,智能仪表具备如下优点:

  (1) 精度高

  智能变送器具有较高的精度。利用内装的微处理器,能够实时测量出静压、温度变化对检测元件的影响,通过数据处理,对非线性进行校正,对滞后及复现性进行补偿,使得输出信号更精确。一般情况,精度为量程的±0.1[%],数字信号可达±0.075[%]。

  (2) 功能强

  智能变送器具有多种复杂的运算功能,依赖内部微处理器和存储器,可以执行开方、温度压力补偿及各种复杂的运算。

  (3) 测量范围宽

  普通变送器的量程比为10:1,而智能变送器可达40:1或100:1,迁移量可达1900[%]和-200[%],减少变送器的规格,增强通用性和互换性,给用户带来诸多方便。

  (4) 通信功能强

  智能变送器均可实现手操器进行操作,既可在现场将手操器插到变送器的相应插孔,也可以在控制室将手操器连接到变送器的信号线上,进行零点及量程的调校及变更。有的变送器具有模拟量和数字量两种输出方式(如HART协议),为实现现场总线通讯奠定了基础。

  (5) 完善的自诊断功能

  通过通信器可以查出变送器自诊断的故障结果信息。

及其技术的发展历程

  历经以模拟技术为特征的电动单元组合仪表、以数模混合技术为特征的DDZ-S系列仪表的开发后,1983年,美国霍尼韦尔公司向制造工业率先推出了新一代智能型压力变送器,这标志着模拟仪表向数字化智能仪表的转变。当时的这种智能变送器已具有高精度、远距离校验和灵活组态的特点,并告知用户:尽管初期购置费用较高,但会被较低的运行和维护费用所补偿。紧随其后的十年里,国外其他公司的智能压力变送器也陆续在一些生产线上被采用,它们包括:Rosemount、Foxboro、YOKOGAWA、Siemens、E&H、Bailey、Fuji和ABB等。但由于缺少高速的智能通讯标准、用户对于高精度监控要求并不突出、培训等服务机制相对薄弱,当时的智能应用并不乐观,只占到了约20[%]的市场。

  随着微电子、计算机、网络和通讯技术的飞速发展以及综合自动化程度的不断提高,目前广泛应用于工业自动化领域的智能仪表,其技术也同样在过去的二十多年里得到了迅猛的发展。目前国外智能仪表占据了国际应用市场的绝大比重,如何结合目前智能仪表的工业应用经验并快速跟踪国际智能前沿技术应用于我国智能仪表的开发研究成为振兴民族智能仪器仪表的一大突出问题。

对于技术及其应用未来发展方向的建议

  (1)智能仪表的智能化程度有待进一步提高

  智能仪表的智能化程度表征着其应用的广度和深度,目前的智能仪表还只是处于一个较低水平的初级智能化阶段,但某些特殊工艺及应用场合则对仪表的智能化提出了较高的要求,而当前的智能化理论,如:神经网络、遗传算法、小波理论、混沌理论等已经具备潜在的应用基础,这就意味着我们有必要也有能力结合具体的应用需要下大气力开发智能化的仪表技术。

  (2) 智能仪表的稳定性、可靠性有待长期和持续的关注

  仪表运行的稳定性、可靠性是用户首要关心的问题,智能仪表也不例外,随着智能仪表技术的不断拓展、新型的智能仪表也将陆续投放市场,这需要我们始终把握一个原则:每一项智能新技术的应用有待实践的检验,是否用户有信心和勇气敢于做“个吃螃蟹的人”。这就需要安全性、可靠性技术的并行开发。

  (3) 智能仪表的潜在功能应用有待化

  目前工业自动化领域的实际应用尚未将智能仪表的功能发挥化,而更多的只是应用了其总体功能的半数左右,而这一应用现状的主要原因是,控制系统的总体架构忽略了诸如现场总线的技术优势,这需要仪表厂商与用户建立良好的合作伙伴关系,加强长期合作,以短期投资促长期效益,通过建立“智能仪表现场总线”的控制系统架构,确立优化的投资观念,达成和谐共赢的目标。

  (4) 继续加大国内智能仪表的开发投入

  智能仪表技术及应用还需要经历一个较为漫长的成熟发展期,而对于国内智能仪表技术及产品开发已经面临着更大的挑战,这种局面召唤着国内仪表行业共同探讨智能仪表的发展问题,应对激烈的国际竞争市场,担负仪表产业的历史使命,在日益优厚的国家及政府扶持政策下,坚持产、学、研的密切结合,继续加大国内智能仪表的开发投入,积聚力量,赢在明天!

相关百科