欧姆接触是金属-半导体界面的一种接触形式,欧姆接触直接影响器件的效率、增益和开关速度等性能指标,可以用于一切器件和电路信号的输入、输出以及各元件间的相互连接。制备高性能而可靠的欧姆接触不仅有重要的技术意义,也有很大的经济意义。
欧姆接触制备是材料工程里研究很充分而不太有未知剩余的部分。可重复且可靠的接触制备需要极度洁净的半导体表面。例如,因为天然氧化物会迅速在硅表面形成,接触的性能会十分敏感地取决于制备准备的细节。
接触制备的基础步骤是半导体表面清洁、接触金属沉积、图案制造和退火。表面清洁可以通过溅射蚀刻、化学蚀刻、反应气体蚀刻或者离子研磨。比如说,硅的天然氧化物可以通过蘸氢氟酸(HF)来去除,而砷化镓(GaAs)则更具代表性的通过蘸溴化甲醇来清洁。清洁过后金属通过溅射、蒸发沉积或者化学气相沉积(CVD)沉积下来。溅射是金属沉积中比蒸发沉积更快且更方便方法但是等离子带来的离子轰击可能会减少表面态或者甚至颠倒表面电荷载流子的类型。正因为此更为平和且依然快速的CVD是更加为人所倾向的方法。接触的图案制造是通过标准平版照相术来完成的,比如剥落中接触金属是通过沉积于光刻胶层孔洞之中并稍后取出光刻胶来完成的。沉积后接触的退火能有效去除张力并引发有利的金属和半导体之间的反应。
任何两种相接触的固体的费米能级(Fermi level)(或者严格意义上,化学势)必须相等。 费米能级和真空能级的差值称作功函。 接触金属和半导体具有不同的工函,分别记为φM和φS。 当两种材料相接触时,电子将会从低工函(高Fermi level)一边流向另一边直到费米能级相平衡。从而,低工函(高Fermi level)的材料将带有少量正电荷而高工函(低Fermi level)材料则会变得具有少量电负性。最终得到的静电势称为内建场记为Vbi。这种接触电势将会在任何两种固体间出现并且是诸如二极管整流现象和温差电效应等的潜在原因。内建场是导致半导体连接处能带弯曲的原因。明显的能带弯曲在金属中不会出现因为他们很短的 屏蔽长度意味着任何电场只在接触面间无限小距离内存在。
在经典物理图像中,为了克服势垒,半导体载流子必须获得足够的能量才能从费米能级跳到弯曲的导带顶。穿越势垒所需的能量φB是内建势及费米能级与导带间偏移的总和。同样对于n型半导体,φB = φM ? χS当中χS是半导体的电子亲合能(electron affinity),定义为真空能级和导带(CB)能级的差。对于p型半导体,φB = Eg ? (φM ? χS)其中Eg是禁带宽度。当穿越势垒的激发是热力学的,这一过程称为热发射。真实的接触中一个同等重要的过程既即为量子力学隧穿。WKB 近似描述了最简单的包括势垒穿透几率与势垒高度和厚度的乘积指数相关的隧穿图像。对于电接触的情形,耗尽区宽度决定了厚度,其和内建场穿透入半导体内部长度同量级。耗尽层宽度W可以通过解泊松方程以及考虑半导体内存在的掺杂来计算。
势垒高度(与电子亲和性和内建场相关)和势垒厚度(和内建场、半导体绝缘常数和掺杂密度相关)只能通过改变金属或者改变掺杂密度来改变。总之工程师会选择导电、非反应、热力学稳定、电学性质稳定且低张力的接触金属然后提高接触金属下方区域掺杂密度来减小势垒高度差。高掺杂区依据掺杂种类被称为 n + 或者p + 。因为在隧穿中透射系数与粒子质量指数相关,低有效质量的半导体更容易被解除。另外,小禁带半导体更容易形成欧姆接触因为它们的电子亲和度(从而势垒高度)更低。
上述简单的理论预言了φB = φM ? χS,因此似乎可以天真的认为工函靠近半导体的电子亲和性的金属通常应该容易形成欧姆接触。事实上,高工函金属可以形成的p型半导体接触而低工函金属可以形成的n型半导体接触。不幸的是实验表明理论模型的预测能力并不比上述论断前进更远。在真实条件下,接触金属会和半导体表面反应形成具有新电学性质的复合物。界面处一层污染层会非常有效的增加势垒宽度。半导体表面可能会重构成一个新的电学态。接触电阻与界面间化学细节的相关性是导致欧姆接触制造工艺可重复性为如此巨大的制造挑战的原因。
特徵接触电阻实验上定义为J-V曲线在V=0处的斜率,J是电流密度:
接触电阻的单位因此成为Ω -cm,其中Ω代表电阻单位欧姆。
接触电阻可以通过比较比较带有欧姆表的四探针测量(four-probe measurement)和简单的两探针测量结果来粗略估计。在两探针测量中,测量电流导致同时跨越探针和接触的势降,从而这些元件的电阻与真是元间的电阻是串联而不可分离的。在四探针测量中,一对探针用於注入测量电流同时另一对并联的探针用於测量跨越器件的势降。在四探针情形下,没有通过电压测量探针的势降因而接触电阻降并不包括其中。从两极法和四极法推导的电阻差值是对接触电阻合理准确的测量假设探针电阻足够小而忽略不计。特性接触电阻可以通过乘以接触面积来得到。
随着集成电路制备过程的发展,远更复杂的接触电阻测量被使用,的方法即为传输线测量)(transmission line measurement)。传输线测量的基本思路是描绘类似接触之间同宽不同长度的条状电阻值。结果曲线的斜率是块状薄膜电阻率(resistivity)的函数而截距即为接触电阻(resistance)。
接触电阻相关联的RC时间常数会限制器件的频率响应。引线电阻的充电与放电高时钟速率的数字电子设备能量耗散的主要原因。接触电阻在非常见半导体制成的低频和模拟电路中通过焦耳热的形式导致能量耗散(比如太阳能电池)。金属接触制备方法的建立是任何新兴半导体科技发展的重要部分。金属接触的电迁移与分离成层也是电子器件寿命的限制因素之一。