显卡

  显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,它将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示。

主要分类

  1)集成显卡

  集成显卡是将显示芯片、显存及其相关电路都做在主板上,与主板融为一体;集成显卡的显示芯片有单独的,但大部分都集成在主板的北桥芯片中;一些主板集成的显卡也在主板上单独安装了显存,但其容量较小,集成显卡的显示效果与处理性能相对较弱,不能对显卡进行硬件升级,但可以通过CMOS调节频率或刷入新BIOS文件实现软件升级来挖掘显示芯片的潜能。

  集成显卡的优点:是功耗低、发热量小、部分集成显卡的性能已经可以媲美入门级的独立显卡,所以不用花费额外的资金购买显卡。

  集成显卡的缺点:不能换新显卡,要说必须换,就只能和主板,CPU一次性的换。

  2)独立显卡

  独立显卡是指将显示芯片、显存及其相关电路单独做在一块电路板上,自成一体而作为一块独立的板卡存在,它需占用主板的扩展插槽(ISA、PCI、AGP或PCI-E)。   独立显卡的优点:单独安装有显存,一般不占用系统内存,在技术上也较集成显卡先进得多,比集成显卡能够得到更好的显示效果和性能,容易进行显卡的硬件升级。

  独立显卡的缺点:系统功耗有所加大,发热量也较大,需额外花费购买显卡的资金。

插槽类型

  是指显卡与主板连接所采用的接口种类。显卡的接口决定着显卡与系统之间数据传输的带宽,也就是瞬间所能传输的数据量。不同的接口决定着主板是否能够使用此显卡,只有在主板上有相应接口的情况下,显卡才能使用,并且不同的接口能为显卡带来不同的性能。

  目前各种3D游戏和软件对显卡的要求越来越高,主板和显卡之间需要交换的数据量也越来越大,过去的插槽早已不能满足这样大量的数据交换,因此通常主板上都带有专门插显卡的插槽。假如显卡插槽的传输速度不能满足显卡的需求,显卡的性能就会受到巨大的限制,再好的显卡也无法发挥。显卡发展至今主要出现过ISA、PCI、AGP、PCI Express等几种接口,所能提供的数据带宽依次增加。其中2004年推出的PCI Express接口已经成为主流,以解决显卡与系统数据传输的瓶颈问题,而ISA、PCI接口的显卡已经基本被淘汰。
AGP接口显卡    PCIE接口显卡
                   AGP接口显卡                                                                      PCIE接口显卡

分辨率

  分辨率是指显卡在显示器上所能描绘的像素点的数量。大家知道显示器上显示的画面是一个个的像素点构成的,而这些像素点的所有数据都是由显卡提供的,分辨率就是表示显卡输出给显示器,并能在显示器上描绘像素点的数量。分辨率一定程度上跟显存有着直接关系,因为这些像素点的数据最初都要存储于显存内,因此显存容量会影响到分辨率,但目前现在流行应用的64MB、128MB等足以应付,目前的显存容量并不会制约分辨率。目前的显示芯片都能提供2048X1536的分辨率,但绝大多数的显示器并不能提供如此高的显示分辨率,基本还没到这个分辨率,显示器就已经黑屏了。

发展历史

  1)CGA显卡

  民用显卡的起源可以追溯到上个世纪的八十年代了。在1981年, IBM推出了个人电脑时,它提供了两种显卡,一种是"单色显卡(简称 MDA),一种是“彩色绘图卡” (简称 CGA), 从名字上就可以看出,MDA是与单色显示器配合使用的,它可以显示80行x25列的文数字, CGA则可以用在RGB的显示屏上, 它可以绘制的图形和文数字资料。在当时来讲,计算机的用途主要是文字数据处理,虽然MDA分辨率为宽752点,高504点,不足以满足多大的显示要求,不过对于文字数据处理还是绰绰有馀的了。而CGA就具有彩色和图形能力,能胜任一般的显示图形数据的需要了,不过其分辨率只有640x350,自然不能与彩色显示同日而语。

  2)MGA/MCGA显卡

  1982年,IBM又推出了MGA(Monochrome Graphic Adapter), 又称Hercules Card (大力士卡), 除了能显示图形外,还保留了原来 MDA 的功能。当年不少游戏都需要这款卡才能显示动画效果。而当时风行市场的还有Genoa 公司做的EGA(Enhanced Graphics Adapter),即加强型绘图卡, 可以模拟MDA和CGA,而且可以在单色屏幕上一点一点画成的图形。EGA分辨率为640x350,可以产生16色的图形和文字。不过这些显卡都是采用数字方式的,直到MCGA(Multi-Color Graphics Array)的出现,才揭开了采用模拟方式的显卡的序幕。MCGA是整合在 PS/2 Model 25和30上的影像系统。它采用了Analog RGA影像信号, 分辨率可高达640x480, 数位RGB和类比RGB不同的地方就像是ON-OFF式切换和微调式切换之间的差别。用类比RGB讯号的显示屏, 会将每一个讯号的电压值转换成符合色彩明暗的范围。只有类比显示屏可以和MCGA一起使用,才可以提供最多的256种颜色, 另外IBM尚提供了一个类比单色显示屏, 在此显示屏上可以显示出64种明暗度。

  3)VGA接口显卡

  VGA(Video Graphic Array)即显示绘图阵列,它IBM是在其 PS/2 的Model 50, 60和80内建的影像系统。它的数字模式可以达到720x400色, 绘图模式则可以达到640x480x16色, 以及320x200x256色, 这是显卡首次可以同时显示256种色彩。而这些模式更成为其後所有显卡的共同标准。VGA显卡的盛行把电脑带进了2D显卡显示的辉煌时代。在以後一段时期里,许多VGA显卡设计的公司不断推陈出新, 追求更高的分辨率和位色。与此同时,IBM 推出了8514/A的Monitor显示屏规格, 主要用来支持1024x 768的分辨率。   在2D时代向3D时代推进的过程中,有一款不能忽略的显卡就是Trident 8900/9000显卡,它次使显卡成为一个独立的配件出现于电脑里,而不再是集成的一块芯片。而後其推出的Trident 9685更是代3D显卡的代表。不过真正称得上开启3D显卡大门的却应该是GLINT 300SX,虽然其3D功能极其简单,但却具有里程碑的意义。

  4)3D AGP接口显卡时代

  1995年,对于显卡来说,是里程碑的一年,3D图形加速卡正式走入玩家的视野。那个时候游戏刚刚步入3D时代,大量的3D游戏的出现,也迫使显卡发展到真正的3D加速卡。而这一年也成就了一家公司,不用说大家也知道,没错,就是3Dfx。1995年,3Dfx还是一家小公司,不过作为一家老资格的3D技术公司,他推出了业界的块真正意义的3D图形加速卡:Voodoo。在当时最为流行的游戏摩托英豪里,Voodoo在速度以及色彩方面的表现都让喜欢游戏的用户为之疯狂,不少游戏狂热份子都有过拿一千多块大洋到电脑城买上一块杂牌的Voodoo显卡的经历。3Dfx的专利技术Glide引擎接口一度称霸了整个3D世界,直至D3D和OpenGL的出现才改变了这种局面。Voodoo标配为4Mb显存,能够提供在640×480分辨率下3D显示速度和最华丽的画面,当然,Voodoo也有硬伤,它只是一块具有3D加速功能的子卡,使用时需搭配一块具有2D功能的显卡,相信不少老 EDO资格的玩家都还记得S3 765+Voodoo这个为人津津乐道的黄金组合。讲到S3 765,就不得不提到昔日S3显卡了。   S3 765显卡是当时兼容机的标准配置,支持2MB EDO显存,能够实现高分辨率显示,这在当时属于高端显卡的功效,这一芯片真正将SVGA发扬光大。能够支持1024×768的分辨率,并且在低分辨率下支持32Bit真彩色,而且性价比也较强。因此,S3 765实际上为S3显卡带来了次的辉煌。

  而後在96年又推出了S3 Virge,它是一块融合了3D加速的显卡,支援 DirectX,并包含的许多先进的3D加速功能,如Z-buffering、Doubling buffering、Shading、Atmospheric effect、Lighting,实际成为3D显卡的开路先锋,成就了S3显卡的第二次辉煌,可惜后来在3Dfx的追赶下,S3的Virge系列没有再继辉煌,被市场最终抛弃。   此后,为了修复Voodoo没有2D显示这个硬伤,3Dfx继而推出了VoodooRush,在其中加入了Z-Buffer技术,可惜相对于Voodoo,VoodooRush的3D性能却没有任何提升,更可怕的是带来不少兼容性的问题,而且价格居高不下的因素也制约了VoodooRush显卡的推广。

  当然,当时的3D图形加速卡市场也不是3Dfx一手遮天,高高在上的价格给其他厂商留下了不少生存空间,像勘称当时性价比的Trident 9750/9850,以及提供了Mpeg-II硬件解码技术的SIS6326,还有在显卡发展史上次出场的nVidia推出的Riva128/128zx,都得到不少玩家的宠爱,这也促进了显卡技术的发展和市场的成熟。1997年是3D显卡初露头脚的一年,而1998年则是3D显卡如雨後春笋激烈竞争的一年。九八年的3D游戏市场风起去涌,大量更加精美的3D游戏集体上市,从而让用户和厂商都期待出现更快更强的显卡。

  在Voodoo带来的巨大荣誉和耀眼的光环下,3Dfx以高屋建瓴之势推出了又一划时代的产品:Voodoo2。Voodoo2自带8Mb/12Mb EDO显存,PCI接口,卡上有双芯片,可以做到单周期多纹理运算。当然Voodoo2也有缺点,它的卡身很长,并且芯片发热量非常大,也成为一个烦恼,而且Voodoo2依然作为一块3D加速子卡,需要一块2D显卡的支持。但是不可否认,Voodoo2的推出已经使得3D加速又到达了一个新的里程碑,凭借Voodoo2的效果、画面和速度,征服了不少当时盛行一时的3D游戏,比如Fifa98,NBA98,Quake2等等。也许不少用户还不知道,2009年最为流行的SLI技术也是当时Voodoo2的一个新技术,Voodoo2次支持双显卡技术,让两块Voodoo2并联协同工作获得双倍的性能。   1998年虽然是Voodoo2大放异彩的一年,但其他厂商也有一些经典之作。Matrox MGA G200在继承了自己超一流的2D水准以外,3D方面有了革命性的提高,不但可以提供和Voodoo2差不多的处理速度和特技效果,另外还支持DVD硬解码和视频输出,并且的首创了128位独立双重总线技术,大大提高了性能,配合当时相当走红的AGP总线技术,G200也赢得了不少用户的喜爱。

  Intel的I740是搭配Intel当时的440BX芯片组推出的,它支持的AGP 2X技术,标配8Mb显存,可惜I740的性能并不好,2D性能只能和S3 Virge看齐,而3D方面也只有Riva128的水平,不过价格方面就有明显优势,让它在低端市场站住了脚。

  Riva TNT是nVidia推出的意在阻击Voodoo2的产品,它标配16Mb的大显存,完全支持AGP技术,首次支持的32位色彩渲染、还有快于Voodoo2的D3D性能和低于Voodoo2的价格,让其成为不少玩家的新宠。而一直在苹果世界闯荡的ATI也出品了一款名为Rage Pro的显卡,速度比Voodoo稍快。

其它相关技术

  1)流处理器单元

  在DX10显卡出来以前,并没有“流处理器”这个说法。GPU内部由“管线”构成,分为像素管线和顶点管线,它们的数目是固定的。简单来说,顶点管线主要负责3D建模,像素管线负责3D渲染。由于它们的数量是固定的,这就出现了一个问题,当某个游戏场景需要大量的3D建模而不需要太多的像素处理,就会造成顶点管线资源紧张而像素管线大量闲置,当然也有截然相反的另一种情况。这都会造成某些资源的不够和另一些资源的闲置浪费。

  在这样的情况下,人们在DX10时代首次提出了“统一渲染架构”,显卡取消了传统的“像素管线”和“顶点管线”,统一改为流处理器单元,它既可以进行顶点运算也可以进行像素运算,这样在不同的场景中,显卡就可以动态地分配进行定点运算和像素运算的流处理器数量,达到资源的充分利用。

  现在,流处理器的数量的多少已经成为了决定显卡性能高低的一个很重要的指标,Nvidia和AMD-ATI也在不断地增加显卡的流处理器数量使显卡的性能达到跳跃式增长,例如AMD-ATI的显卡HD3870拥有320个流处理器,HD4870达到800个,HD5870更是达到1600个!

  值得一提的是,N卡和A卡GPU架构并不一样,对于流处理器数的分配也不一样。N卡每个流处理器单元只包含1个流处理器,而A卡相当于每个流处理器单元里面含有5个流处理器,例如HD4850虽然是800个流处理器,其实只相当于160个流处理器单元,另外A卡流处理器频率与核心频率一致,这是为什么9800GTX+只有128个流处理器,性能却与HD4850相当(N卡流处理器频率约是核心频率的2.16倍)。

  2)3D API

  API是Application Programming Interface的缩写,是应用程序接口的意思,而3D API则是指显卡与应用程序直接的接口。

  3D API能让编程人员所设计的3D软件只要调用其API内的程序,从而让API自动和硬件的驱动程序沟通,启动3D芯片内强大的3D图形处理功能,从而大幅度地提高了3D程序的设计效率。如果没有3D API,在开发程序时程序员必须要了解全部的显卡特性,才能编写出与显卡完全匹配的程序,发挥出全部的显卡性能。而有了3D API这个显卡与软件直接的接口,程序员只需要编写符合接口的程序代码,就可以充分发挥显卡的性能,不必再去了解硬件的具体性能和参数,这样就大大简化了程序开发的效率。同样,显示芯片厂商根据标准来设计自己的硬件产品,以达到在API调用硬件资源时化,获得更好的性能。有了3D API,便可实现不同厂家的硬件、软件范围兼容。比如在最能体现3D API的游戏方面,游戏设计人员设计时,不必去考虑具体某款显卡的特性,而只是按照3D API的接口标准来开发游戏,当游戏运行时则直接通过3D API来调用显卡的硬件资源。

  个人电脑中主要应用的3D API有:DirectX和OpenGL。

  3)RAMDAC频率和支持分辨率

  RAMDAC是Random Access Memory Digital/Analog Convertor的缩写,即随机存取内存数字~模拟转换器。

  RAMDAC作用是将显存中的数字信号转换为显示器能够显示出来的模拟信号,其转换速率以MHz表示。计算机中处理数据的过程其实就是将事物数字化的过程,所有的事物将被处理成0和1两个数,而后不断进行累加计算。图形加速卡也是靠这些0和1对每一个象素进行颜色、深度、亮度等各种处理。显卡生成的信号都是以数字来表示的,但是所有的CRT显示器都是以模拟方式进行工作的,数字信号无法被识别,这就必须有相应的设备将数字信号转换为模拟信号。而RAMDAC就是显卡中将数字信号转换为模拟信号的设备。RAMDAC的转换速率以MHz表示,它决定了刷新频率的高低(与显示器的“带宽”意义近似)。其工作速度越高,频带越宽,高分辨率时的画面质量越好。该数值决定了在足够的显存下,显卡支持的分辨率和刷新率。如果要在1024×768的分辨率下达到85Hz的分辨率,RAMDAC的速率至少是1024×768×85Hz×1.344(折算系数)≈90MHz。2009年主流的显卡RAMDAC都能达到350MHz和400MHz,已足以满足和超过大多数显示器所能提供的分辨率和刷新率。

  4)散热设备

  显卡所需要的电力与150瓦特灯具所需要的电力相同,由于运作集成电路 (integrated circuits)需要相当多的电力,因此内部电流所产生的温度也相对的提高,所以,假如这些温度不能适时的被降低,那么上述所提到的硬设备就很可 能遭受损害,而冷却系统就是在确保这些设备能稳定、适时的运转,没有散热器或散热片,GPU或内存会过热,就会进而损害计算机或造成当机,或甚至 完全不能使用。这些冷却设备由导热材质所制成,它们有些被视为被动组件,默默安静地进行散热的动作,有些则很难不发出噪音,如风扇。散热片通常被视为被动散热,但不论所安装的区块是导热区,或是内部其它区块,散热片都能发挥它的效能,进而帮助其它装置降低温度。散热片通常与风扇一同被安装至GPU或内存上,有时小型风扇甚至会直接安装在显卡温度的地方。显卡是个极度依赖散热管进行散热的装置,由华硕所制成的Raden X 1600就拥有两个散热管,它们可将热能传送至位于卡槽后方的大型散热片进行散热。

  散热片的表面积愈大,所进行之散热效能就愈大(通常必须与风扇一起运作),但有时却因空间的限制,大型散热片无法安装于需要散热的装置上;有时又因为装置的体积太小,以至于体积大的散热片无法与这些装置连结而进行散热。因此,热管就必须在这个时候将热能从散热处传送至散热片中进行散热。一般而言,GPU外壳由高热能的传导金属所制成,热管会直接连结至由金属制成的芯片上,如此一来,热能就能被轻松的传导至另一端的散热片。市面上有许多处理器的冷却装置都附有热管,由此可知,许多热管已被研发成可灵活运用于显卡冷却系统中的设备了。大部分的散热器只是由散热片跟风扇组合而成,在散热片的表面上由风扇吹散热能,由于GPU是显卡上温度的部分,因此显卡散热器通常可以运用于GPU上,同时,市面上有许多零售的配件可供消费者进行更换或升级,其中最常见的就是VGA散热器。

相关百科