图 1该电路可能是您可以构建的简单的高压逆变器。
在 Q 2导通时,会发生以下情况:当控制输入 PWM 变低时,由于 D 7 的作用,Q 3快速关闭。位移电流C 4 ×dV/dt通过C 4流至Q 1的基极。 Q 1对Q 3的输出电容和Q 2的栅极电容充电,并且Q 2导通。 C 3提供集电极电流。如果周期较长,Q 1保持导通,补偿Q 3的漏电。如果 D 6是漏电的肖特基二极管,则必须减小 R 1的值。两个MOSFET之间存在较短的交叉导通周期,这种现象在Q 3关断而Q 2导通时更为明显。与主电源串联的小电感器 L 1限制电流尖峰。电感器需要一个由 D 1、R 1和 C 2组成的缓冲器。请注意,电感值是保守值,可以更小。这些值适用于具有 150% 过载能力的 370W 三相逆变器。如果更改 MOSFET,C 4的值必须根据总栅极电荷加上 Q 3的输出电容而变化,该值要低得多,实际上可以忽略不计。 Q 1放大电容器电流,因此C 4与Q G2 ×h FE1成正比。使C 4的值不要高于必要值,因为Q 1中的基极电流会太高。为了获得电路的所有速度优势,PWM信号应该能够快速驱动Q 3。如果需要,可以使用缓冲电路(图2)。您可以使用单个 CMOS 门驱动电路。图 1 中的电路可能是您可以设计的简单的高压逆变器。它已服务于数千个 0.37 至 0.75 kW 的三相电机驱动器。
图 2该缓冲器提高了图 1 电路的 PWM 输入的速度。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。