OCP是一个共享数据中心设计的组织,其系统架构定义基于开放计算项目开放机架第2版(OCP ORV2),其中背板电压标称值为12 V,系统功率为3 kW。另一方面,使用量的增加导致功率需求增加,这使得12 V系统的功率要求过高,进而不利于整体系统性能。为了解决这个问题,在系统功率保持不变的情况下,背板电压增加到48 V,从而尽量减少所需的电流和铜走线,并降低背板散发的热量。这一变化提高了整体系统效率,并降低了对复杂散热系统的需求。这就是新的开放机架第3版标准(OCP ORV3)的基础。
OCP组织提供的规范(第1.3版)中概述了满足BBU模块标准所需达到的构思和设计要求。BBU模块参考设计基于ORV3 48 V提案,由带BMS的电池包、充电/放电电路和其他功能块组成,如图2所示。
参考设计框图(见图3)显示了选定的器件,以及为完成某些任务而集成的各种元件,它们构成的电路能够提供不间断电源、判断模块运行状况和故障并执行模块通信。LT8228是一款双向同步控制器,位于BBU模块内。该器件在线路电源中断的情况下提供电源转换,并在非故障运行期间提供电池充电功能。LT8551是一款4相同步升压DC-DC相位扩展器,与LT8228协同工作,将放电功率输送能力提高至每个BBU模块3 kW。除了电源转换IC外,BBU模块还包含MAX32690,它是一款超低功耗Arm?微控制器,负责整个系统的运行。LTC2971是一款2通道电源系统管理器,用于实现电源路径的精密感知和故障检测,以及关键的电压下降功能。MAX31760是一款精密风扇转速控制器,用于在充电和放电操作期间执行系统散热功能。EEPROM用作数据存储设备,允许用户在BBU模块可用期间恢复任何有用数据。除了电源转换器和负责一般管理任务的微控制器之外,设计中还包含BMS IC。ADBMS6948是一款16通道多电芯电池监控器,用于监测电池电压水平,而其固有的库仑计数器用于确定充电状态(SOC)和SOH水平,以进行电池平衡和电池预期寿命计算。电池运行状态监控程序由超低功耗Arm微控制器MAX32625完成。两款微控制器均经过精心挑选,以降低总功耗,从而延长BBU休眠工作模式期间的电池寿命。
除了所提供的器件之外,该参考模块还提供和构建了BBU模块(见图4a)和BBU层板(见图5),以容纳和展示符合OCP ORV3 BBU模块和层板机械规范的参考设计。BBU层板包括6个BBU模块插槽,因此单个BBU层板可根据需要提供高达18 kW的备用电源。
图4. (a) ADI BBU模块的3D渲染机械概览,(b) 气流仿真
数据与结果
BBU模块参考设计证明了它能够在满足ORV3 BBU规范的约束条件下,实现更高的效率和更低的功率损耗。放电和充电限制分别设置为97%和95%。在放电操作期间,测得的半负载(31.6 A)平均效率为98.5%,而满负载(63.2 A)平均效率为98%。受更大电感的影响,较低的MOSFET漏源导通电阻和精心选择的开关频率将有助于提高效率和降低纹波电流。此外,BBU模块在5 A负载的充电操作期间实现了97%的高平均效率。在使用相同电感值的情况下以400 kHz开关频率运行时,效率得到提高,功率损耗也充分降低。高效率和较低功率损耗将有助于延长电池寿命周期,并降低散热所需的风扇转速。参见图6。
ORV3 BBU规范的另一个要求是在放电工作模式期间考虑压降。电压下降是指在驱动系统负载时有意降低BBU背板电压的现象。BBU背板电压将根据LTC2971在线DAC测得的系统负载电流而实时改变。因此,从空载到满载的背板压降保持在ORV3 BBU要求的±1%限值以下。参见图7。
BBU模块的开关操作在放电工作模式期间至关重要,它将30 V至44 V电池包电压转换为48 V背板电压。这是通过同步功率MOSFET实现的,它由LT8228脉冲宽度调制(PWM)信号准确调节,配套的LT8551重复LT8228的操作。每相的开关频率和均流导致电压升高,是影响其运行的重要因素。主转换器及其多相扩展器在满载时的开关波形如图8所示。在充电工作模式中,双向转换器以单相操作,将49 V至53 V背板电压降低至44 V,为电池包充电。它的工作原理是快速切换同步功率MOSFET并使电感电流斜坡上升。双向转换器在5 A负载下的开关波形如图9所示。
图8. 以44 V输入和63.2 A输出负载运行时,放电工作模式期间主控制器和扩展器的开关波形
必须仔细平衡热性能和效率。BBU模块必须能够承受高温并持续工作,而不会过热,同时也要以理想效率运行,能够将尽可能多的输入功率转化为输出功率。在图10中,在放电工作模式(满负载运行约4分钟)期间测得的电路板差温度仅为40°C至60°C。在充电模式下,同步MOSFET的温度低于50°C。合理构建的空气散热系统可降低元器件的发热量,防止热失控。为避免电池堆过热,需要设计合理的电芯间距和适当的气流。参见图11。
图10. 放电和充电工作模式下各自满载运行时电路板的热性能。
BBU模块的工作模式转换对于确保电源中断或变化期间的不间断供电至关重要。此过程包括将电池包能量顺利传输到数据中心的背板,确保重要系统和设备保持正常运行4分钟。BBU模块持续监测背板母线电压。当母线电压在2 ms内下降至BBU模块激活电平(48.5 V)时,BBU模块背板电压必须斜坡上升,以在2 ms内为母线提供全部功率。在整个转换过程中,母线电压不得降至46 V以下。BBU模块检测到母线电压超过48.5 V并持续200 ms以上后,退出放电工作模式。参见图12。
图12. 从稳定状态过渡到电源中断状态。免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。