问题 2 电路
您会注意到的件事是,期中使用的 3524 芯片已被丢弃。取而代之的是 LM339。3524 和所有类似的芯片都是为开关模式电源调节器而不是 PWM 电机控制而设计的,因此它们不允许 0-100% 调制。使用 LM339 允许 100% 调制。
Tr1 是一个开关,由电位器操作,将电源轨连接到内部电源轨。发射器中有一个 47R,用作电源去耦。该电路将在低于 12v 的电压下工作到 LM339 的极限,大约 36v。
然而,36v 电池在充满电后可以超过 40v,这超出了 LM339 的保证工作范围。在后来的设计中,我们也因此改变了供电系统。请注意从引脚 14 (IC1b) 到 0v 的 12v 齐纳
二极管将 MOSFET 栅极电压限制为 12v:24v 对于大多数 MOSFET 来说太高了!
Ic1c 是一种“标准”
运算放大器三角波形振荡器:一种经过试验和测试的电路,运行良好。有关详细信息,请参阅4QD www 网站公共区域的Pulse Width Modulators 。Ic1b 是调制器,它将三角波形与速度需求电压进行比较以确定 pwm 比率。注意 4mA 电流源(Tr2 和 Tr3)上拉引脚 14。该电流源为驱动 MOSFET 栅极的射极跟随器 Tr4 和 Tr5 提供基极驱动。
这里的电流源感觉“不错”- 比较器的原始开关时间自然非常快,因此很有必要控制栅极导通电压的上升速率。为 C9 和 C10 并联充电的电流源可以很好地做到这一点。然而,这是我们现在不使用的不必要的品。
输出波形以及驱动 Tr4 和 Tr5,被馈送到 Tr6,Tr6 是控制高电平开关的极
晶体管。C10,以及控制 loside 栅极导通的上升速率,还加快了对 Tr6 的驱动,有助于在 loside MOSFET 开始导通之前打开 Tr6(因此 hiside 关闭)。
电流感测的工作方式已在4QD www 网站公共区域的MOSFET 电流感测中进行了说明。只引用了整个电路的一小部分。检测到的电流在 Tr12 的 47R 源
电阻器上产生一个电压,该电压通过电阻分压器网络馈送到 Tr10 的基极。
本站公开的3524电路使用了类似的hi-side charge pump。在这种情况下,三角振荡器在 IC1c 引脚 2 上的输出是一个很好的 50% 方波,正好可以运行一个 hiside 电荷泵。Tr11 构成图腾柱输出级的顶部,以驱动作为泵浦电容器的 C7。
C8 是 hiside 驱动器的储能电容器。连接在它两端的 12v
齐纳二极管限制了它上面的电压——否则泵和自举动作会加起来提供超过 MOSFET 栅极可以安全处理的电压。
输入缓冲器和斜坡
锅通过预设进给,这是为了调整灵敏度,使锅的全速旋转只会提供全速,而不会更多。请记住,电路使用的是 12 或 24 伏电压,并且锅中存在全电压,因此将调整预设以适应工作电压。