如图中,负反馈放大电路在引入了反馈量之后,放大电路的净输入Xid将减小,所以Xi和Xf是同相位的,也就是通过基本放大电路A和反馈网络F的处理之后,信号变化了整数个周期,有相移角φa+φf=2n*180°。
我们将|A·F|和φa+φf的图形横坐标(频率)对齐,然后比对。
当|A·F|=1时,也即20lg|A·F|=0时,频率为f0,对应到附加相移φa+φf图形上,可以看到此时相移是小于180°的,所以不会自激振荡。也可以通过相位条件反推,当相位条件满足时,频率为图中f180,对应到幅值图形中,可以看到增益Gm的对数是小于0的,即|A·F|<1,也不会自激振荡。
图中增益为0dB的相位与180°的差值φm称为相位裕度,Gm与0dB的差值称为增益裕度。工程上一般要求φm>=45°或Gm<=-10dB,以保证电路在外界干扰、环境变化、电路参数等条件变化时仍能保持良好的稳定性。
下面我们以几个简单的例子来说明一下
a)不满足自激条件的电路仿真
如下图,是一个简单的电压跟随器电路,负载是一个纯电阻:
我们使用波特图仪仿真出它的环路增益波特图,个图是幅频响应,第二个图是相频响应。
可以看到,幅图中,这个电路的环路增益始终比0dB小(为-0.004dB,频率到1.9MHz时约为-10.9dB),所以不会自激振荡。
另一方面,第二幅图中,相频响应要到2.98MHz才能使相移到145°左右,而此时幅频响应是要远小于0dB的,所以也不会自激振荡。而且这个电路有比较大的相位裕度和增益裕度。
b)可能自激的情况
如下图,仍然是同样的电压跟随器电路,但是负载是一个电阻并联电容:
我们知道,运放驱动电容性负载,是很容易发生振荡的,实际分析情况如何呢?
可以看到,幅图中,这个电路的环路增益起始为0dB,之后有一个升高的尖峰,此区间增益是大于0dB的;到9.205kHz时降为1.75dB,此时仍然是大于0dB的。
另一方面,第二幅图中相频响应在9.205kHz时,相移为-179.4°,接近-180°,此时是非常容易自激振荡的。
3)运放自激振荡的补偿
运放自激振荡时,一般可以通过以下几种方法解决:
a)当振荡由分布电容、电感等引起时,可通过反馈端并联电容,抵消影响
如下图,反相比例放大电路中,输入处有分布电容Cin,这个电容会引起一定的相位滞后,在一定频率下会使得电路振荡;解决办法是在反馈电阻R2上并联一个电容Cf,称为相位超前补偿;增加Cf后可以使得0dB点的频率后移。一般Cf取值为几pf至几十pf,大于Cin即可。
b)振荡是由于运放驱动容性负载引起,可以在输出端串接小电阻消除
运放驱动容性负载,会使得反馈信号滞后,可以在输出处串接一个小电阻,减弱电容对反馈信号的滞后作用;这属于环路外补偿。如下仿真图:
和上一节的容性负载波特图比较,可以看到,在有容性负载的输出处串联了一个5.1Ω的小电阻后,已经没有大于0dB的点,而且相位裕度也很大。
c)降低环路增益
前两种方法都是通过调整电路的相位来实现的,某些时候,可以降低电路的环路增益(即减少反馈量,增大闭环增益)来解决振荡问题。如某些种类的运放在闭环放大倍数小于1时,不能稳定工作,此时可以调整参数,增大其闭环增益A(即减小F),则可以稳定工作。
免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。