20W荧光灯电子镇流器电路及其工作原理

出处:chunyang时间:2011-07-18

  该电子镇流器电路如图2所示。高频电感L1为射频干扰抑制电感,与高频滤波电容器C9相配合,能有效地滤除半桥功率逆变电路中产生的高次谐波脉冲干扰电流对电网的污染,降低了电子镇流器使用时对其他家用电器的射频干扰。
  整流二极管VD5、VD6、VD7与电解电容器C1、C2构成无源逐流滤波电路,改善了普通桥式整流、单电容滤波电路使交流输入市电电流波形严重畸变的弊端。无源逐流滤波电路与L1、C9相配合,可以使电子镇流器的功率因数提高到0.95。
  图2中的VT3、VT4构成该电子镇流器的过电压、过电流故障保护电路。当电子镇流器电路的主振电路正常工作时,并联在直流回路里的电阻R10、R11 起分压作用,在电阻R11上分出的电压给钳位二极管VD11提供一个反偏电压,使二极管VD11截止。由于在电子镇流器电路正常工作时电阻R9上的电压降较低,不足以使双向触发二极管(双向触发二极管亦称二端交流器件,它属于三层构造、具有对称性的二端半导体器件,可等效于基极开路、发射极与集电极对称的NPN晶体管,它在电路中起过压保护作用)VD14 触发导通,所以晶体管VT4的基极无正向偏置电压而截止。同时,晶体管VT3的基极也由于得不到足够的正向偏置电压而截止,不影响振荡电路的正常工作。当电子镇流器电路出现过电压或过电流故障时,f点的振荡输出电压升高,j点的电压也相应上升。当j点电压高于i点电压时,二极管VD12由于受正向偏置电压的作用而导通,i点的直流电压迅速升高。当i点的直流电压达到或超过双向触发二极管VD14的阈值电压时,VD14导通,晶体管VT4的基极由于得到较高的正向偏置电压而饱和导通。晶体管VT4饱和导通后,相当于短路了振荡线圈T的N3绕组,功率开关振荡晶体管VT2迅速截止,振荡电路停止振荡,致使半桥功率变换电路无输出。与此同时,i点的一部分直流电压加于晶体管VT3的基极,使晶体管VT3的基极电位迅速升高而饱和导通,双向触发二极管VD13对地短路,从而关闭触发电路。这时电容C3上不再有锯齿波电压输出,整个振荡电路迅速关闭,使电子镇流器电路的元器件不致由于过电压或过电流而损坏。主电路为VT1、VT2和VD13构成的二极管触发式半桥逆变电路。

荧光电子镇流器电路图
 

图2 采用逐流电路的20W荧光灯电子镇流器电路

 
  电阻-温度特性是PTC元件(PTC为正温度系数的意思,习惯上泛指正温度系数热敏半导体材料或元器件等)基本的特性,常简称为阻温特性。阻温特性是指在规定电压下热敏电阻的零功率电阻与温度之间的关系。阻温特性曲线通常绘制在对数坐标中,线性横坐标表示温度,对数纵坐标表示电阻值。一般PTC元件的阻温特性如图3所示。
  Rmin为零功率电阻,对应温度为Tmin。Rmax为零功率电阻,对应温度为Tmax。零功率电阻与零功率电阻的比值(maxminRR)称为升阻比。
  在图3中,V1>V2,表明在电压V1作用下PTC元件的升阻比、温度系数等均优于V2。因此,在实际应用中必须注意加到PTC元件上的电压大小,尽可能使其电压低些。

PTC元件在电子镇流器中的作用
 

图3 PTC元件在电子镇流器中的应用

  图4所示为PTC元件的伏安特性曲线,表示加在PTC元件两端的电压与电流之间的关系。从图4中可以看出,环境温度T1>T2,在T1环境温度下,流经PTC元件的电流大于环境温度为T2时的电流。所以,在使用中应尽量降低PTC元件的环境温度。图5所示为PTC元件的电流-时间特性曲线,表示在对PTC元件施加电压的过程中流过PTC元件的电流随时间变化的特性。

PIC元件的伏安特性曲线
 

图4 PTC元件的伏安特性曲线

PIC元件的电流-时间特性曲线
 

图5 PTC元件的电流-时间特性曲线

  电子镇流器电路主要利用PTC元件的阻温特性来实现荧光灯灯丝的预热。利用TPC元件,电子镇流器可以十分方便地实现以下两个功能:

  ① 荧光灯灯丝的预热和荧光灯启辉。

  ② 电子镇流器过电流、过热保护。



  
上一篇:输入端保护的固定负输出集成稳压电源电路
下一篇:LM317电子变压稳压电源

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关电路图