VLSI 设计中的线性 RC 延迟模型

时间:2023-04-14

众所周知,为了使晶体管更小,人们做了大量工作。然而,仍然需要对 VLSI 电路和模块进行相应的工作,以适应更小的设计。这些 VLSI 电路和模块可能很简单,只有几个逻辑门(包含两到四个晶体管),也可能是包含成千上万个晶体管的更大系统。相反,这些系统需要满足各种工作条件下的速度/延迟和功率要求。

在本文中,我们将讨论如何确定单个晶体管的大小,以便在考虑到这些需求的情况下与其他晶体管正确集成。我们将首先介绍 RC 延迟模型。

这篇文章是系列文章的一部分,在该系列文章中,我们还将讨论其他流行的模型,例如用于估计 VLSI 电路延迟的 Elmore 延迟和逻辑努力。在这些后续文章中,我们还将研究如何组合这些晶体管和栅极以提供面积,同时提供性能。

 

线性 RC 延迟

与大多数电气系统一样,晶体管可以建模为简单的 RC 电路,其中通道宽度建模为电阻器,而扩散(即源极/漏极)之间的空间建模为电容器

这创建了一个 RC 网络,该网络以在输入端(在本例中为晶体管的栅极)应用阶跃输入时具有指数上升/下降瞬态响应而闻名。上升/下降时间(即输出电压电平与输入电压电平匹配所需的时间)定义了晶体管电路的延迟。

 

计算晶体管的电阻

现在,什么是晶体管的有效电阻?我们如何计算晶体管的电阻?

通常,晶体管的电阻是漏源电压与漏源电流之间的比率。

在建模中,单位 NMOS 晶体管的有效电阻为 R,等于单元库或工艺中使用的尺寸 NMOS 晶体管的电阻。并且由于具有大宽度的晶体管驱动更多电流,因此 k 倍单位宽度的 NMOS 晶体管具有 RkRk 的电阻。而由于PMOS晶体管的迁移率较低,其有效电阻通常为2Rk

 

晶体管的有效电容

对于 k 倍单位宽度,单位 NMOS/PMOS 晶体管的有效电容为“C”或“kC”。用于驱动类似逆变器的逆变器的等效 RC 电路如下图 1 所示。     

 

图 1. 所有图像改编自 CMOS VLSI 设计(第 4 版)1,作者 Neil HE Weste 和 David Money Harris

 

由于反相器的PMOS晶体管尺寸为2倍单位,NMOS为单位宽度,因此它通常为驱动电路提供总计3C的输入电容。

回顾一下,当输入为高电平 (3.3V) 时,NMOS(底部晶体管)导通,并在将输出电压下拉至地 (0V) 的同时提供“R”电阻。但是,当输入为低电平 (0V) 时,PMOS(顶部)导通,并且在将输出电压拉至高电平 (3.3V) 的同时还提供 R 的电阻。

这意味着,在上升/下降转换中,等效 RC 电路的有效电阻为“R”。同时,每个晶体管(3C)的总电容不随晶体管的变化而变化。由于我们有两个逆变器级联在一起,它们总共提供 6C 的电容。

 

为 3 输入与非门调整晶体管大小

为了进一步了解晶体管在逻辑门中的大小,让我们看一下 3 输入与非门。

作为参考,如果任何输入为低电平,与非门将提供高电平输出。相反,当所有输入均为高电平时,输出将为低电平。这为我们提供了三个并联的 PMOS——只有一个 PMOS 足以将输出电压拉至高电平——以及三个串联的 NMOS——这三个 NMOS 需要先导通才能将输出电压拉至低电平。

为了有效地调整每个晶体管的尺寸,我们必须注意,电路中的晶体管尺寸必须以 NMOS 部分提供单位电阻“R”而 PMOS 部分必须提供两倍单位电阻“2R”的方式确定以确保相等的上升/下降时间。

由于三个 NMOS 晶体管串联连接,它们的总电阻必须为 \((\frac{R}{3} + \frac{R}{3} + \frac{R}{3} = R)\)其中 k = 3。由于只有一个 PMOS 足以将输出拉至高电平,因此在坏情况下,每个 PMOS 晶体管保持有效电阻 \(\frac {2R}{2} = R \) 其中 k = 2.(R3个+R3个+R3个=R)2个R2个=R

在上升/下降晶体管处,每个输入将呈现 5C 的输入电容,而输出端 Y 的总输出电容为 (2C+2C+2C+3C = 9C)。

向前推进,可以开发等效 RC 电路以给出图 2(c) 和 2(d) 中所示的电路。

 

图 2。

 

下降过渡 (2(c)) 显示所有 NMOS 晶体管都需要导通,而上升过渡 (2(d)) 显示坏情况,其中一个 PMOS 导通同时两个 NMOS 晶体管导通, ,有助于电路的总电容。

 

评估电路的瞬态响应:传播延迟、STC 和 TTC

在推导出合适的等效 RC 电路后,下一步是检查电路的瞬态响应。如果我们检查下面图 3 中所示逆变器的等效 RC 电路,目标是估计在输出端看到输入电压的时间。

施加输入 (V DD ) 与输出 \(\frac {V_{DD}}{2}\)之间的时间称为传播延迟传播延迟的表达式可以从给出的一阶电路的经典传递函数导出: V2个

 

H()=1个1个+RCVo=V电子?RC

 

因此,传播延迟是瞬态响应的时间常数 (τ),即:

 

pd=RC

 

图 3。

 

从图 3 中的延迟响应来看,目标是将传播延迟推至接近于零以生成总体上更快的电路。在文献中,这种方法通常被称为单时间常数(STC) 方法,这是一种估算电路延迟的简单方法。 

然而,这种方法在估计较大电路的延迟时似乎不准确,这导致了双时间常数(TTC) 近似的发展,由于第二个时间常数,它使我们有机会获得更好的延迟估计。

检查上面讨论的 3 输入与非门,其 RC 电路可以如图 4 所示给出。

 

图 4。

 

该电路的阶跃响应为

 

H()=1个1个+[R1个C1个+(R1个+R2个)C2个]+2个R1个C1个R2个C2个

 

 

Vo()=Vτ1个电子?ττ1个?τ2个电子?ττ2个τ1个?τ2个
 

在哪里

 

τ1个,2个=R1个C1个+(R1个+R2个)C2个2个[1个±1个?4个RC[1个+(1个+R)C]2个]

 

 

R=R2个R1个;C=C2个C1个

 

但由于 TTC 近似的复杂性,这违背了将 CMOS 电路延迟简化为简单 RC 网络的目的。然而,它可以通过 STC 模型进行简化,给出一个近似的时间常数 (τ)。

 

τ=τ1个+τ1个=R1个C1个+(R1个+R2个)C2个

 

单时间常数 (STC) 与双时间常数 (TTC)

根据 Mark Alan Horowitz 1 的说法,如果性常数明显大于另一个,则此近似值有效。

然而,根据 Neil HE Weste 和 David Money Harris 2 的说法,这种近似被认为会产生 7%-15% 的误差,因此不能给出中间节点的准确延迟描述。 

上一篇:降压转换器不连续模式和续模式
下一篇:了解电阻电流检测中的放大器失调电压和输出摆幅

免责声明: 凡注明来源本网的所有作品,均为本网合法拥有版权或有权使用的作品,欢迎转载,注明出处。非本网作品均来自互联网,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。

相关技术资料